分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,得到f(x)的最小值,从而证出结论;
(2)根据不等式1+x≤ex恒成立,得到0<1-$\frac{i}{2n}$≤${e}^{-\frac{i}{2n}}$,其中i=1,2,3…2n-1,求和即可.
解答 解:(1)∵f′(x)=ex-1,
∴当x<0时,f′(x)<0;当x>0时,f′(x)>0.
∴f(x)在区间(-∞,)]上为减函数,在[0,+∞)上为增函数,
∴f(x)在R上的最小值为f(0)=0,因此f(x)≥0恒成立;
(2)由(1)知,不等式1+x≤ex恒成立,
所以对任意正整数n有,0<1-$\frac{i}{2n}$≤${e}^{-\frac{i}{2n}}$,其中i=1,2,3…2n-1,
即对任意正整数n有,0<${(\frac{2n-i}{2n})}^{n}$≤${e}^{-\frac{i}{2}}$,其中i=1,2,3,…,2n-1,
∴($\frac{1}{2n}$)n+($\frac{3}{2n}$)n+($\frac{5}{2n}$)n+…+($\frac{2n-1}{2n}$)n
<${e}^{-\frac{2n-1}{2}}$+${e}^{-\frac{2n-3}{2}}$+…+${e}^{-\frac{1}{2}}$
=$\frac{{e}^{-\frac{1}{2}}(1{-e}^{-n})}{1{-e}^{-1}}$<$\frac{{e}^{-\frac{1}{2}}}{1{-e}^{-1}}$=$\frac{\sqrt{e}}{e-1}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明即可.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{3}{4}$,$\frac{3}{2}$) | B. | (-∞,$\frac{3}{4}$)∪($\frac{3}{2}$,+∞) | C. | (-$\frac{3}{2}$,-$\frac{3}{4}$) | D. | (-∞,-$\frac{3}{2}$)∪(-$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3,6} | B. | {2,5} | C. | {2,5,6} | D. | {2,3,5,6,8} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com