精英家教网 > 高中数学 > 题目详情
3.已知f(x)=ex-x-1(e为自然对数的底数).
(1)求证:f(x)≥0恒成立;
(2)求证:($\frac{1}{2n}$)n+($\frac{3}{2n}$)n+($\frac{5}{2n}$)n+…+($\frac{2n-1}{2n}$)n<$\frac{\sqrt{e}}{e-1}$对一切正整数n均成立.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,得到f(x)的最小值,从而证出结论;
(2)根据不等式1+x≤ex恒成立,得到0<1-$\frac{i}{2n}$≤${e}^{-\frac{i}{2n}}$,其中i=1,2,3…2n-1,求和即可.

解答 解:(1)∵f′(x)=ex-1,
∴当x<0时,f′(x)<0;当x>0时,f′(x)>0.
∴f(x)在区间(-∞,)]上为减函数,在[0,+∞)上为增函数,
∴f(x)在R上的最小值为f(0)=0,因此f(x)≥0恒成立;
(2)由(1)知,不等式1+x≤ex恒成立,
所以对任意正整数n有,0<1-$\frac{i}{2n}$≤${e}^{-\frac{i}{2n}}$,其中i=1,2,3…2n-1,
即对任意正整数n有,0<${(\frac{2n-i}{2n})}^{n}$≤${e}^{-\frac{i}{2}}$,其中i=1,2,3,…,2n-1,
∴($\frac{1}{2n}$)n+($\frac{3}{2n}$)n+($\frac{5}{2n}$)n+…+($\frac{2n-1}{2n}$)n
<${e}^{-\frac{2n-1}{2}}$+${e}^{-\frac{2n-3}{2}}$+…+${e}^{-\frac{1}{2}}$
=$\frac{{e}^{-\frac{1}{2}}(1{-e}^{-n})}{1{-e}^{-1}}$<$\frac{{e}^{-\frac{1}{2}}}{1{-e}^{-1}}$=$\frac{\sqrt{e}}{e-1}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.用比较法证明(x-1)(x-3)<(x-2)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为($\frac{π}{6}$,2)和($\frac{2π}{3}$,-2)
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间(0,$\frac{π}{2}$)上的对称中心、对称轴;
(3)将函数f(x)图象上每一个点向右平移$\frac{π}{3}$个单位得到函数y=g(x),令h(x)=f(x)•g(x),求函数h(x)在区间(-$\frac{π}{3}$,0)上的最大值,并指出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,b>0,c>0,用综合法证明:$\frac{b+c}{a}$+$\frac{c+a}{b}$+$\frac{a+b}{c}$≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知y=f(x)是开口向上的二次函数,且f(1+x)=f(1-x)恒成立,若f(x+1)<f(3x-2),则x的取值范围是(  )
A.($\frac{3}{4}$,$\frac{3}{2}$)B.(-∞,$\frac{3}{4}$)∪($\frac{3}{2}$,+∞)C.(-$\frac{3}{2}$,-$\frac{3}{4}$)D.(-∞,-$\frac{3}{2}$)∪(-$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=x•ln\frac{a}{x}\;\;(a>0)$.
(Ⅰ)若函数g(x)=ex在x=0处的切线也是函数f(x)图象的一条切线,求实数a的值;
(Ⅱ)若函数f(x)的图象恒在直线x-y+1=0的下方,求实数a的取值范围;
(Ⅲ)若x1,x2∈($\frac{a}{e}$,$\frac{a}{2}$),且x1≠x2,判断${({{x_1}+{x_2}})^4}$与a2x1x2的大小关系,并说明理由.
注:题目中e=2.71828…是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U={1,2,3,4,5,6,7},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁UB)=(  )
A.{3,6}B.{2,5}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是120°,且$\overrightarrow{a}$=(-2,-4),|$\overrightarrow{b}$|=$\sqrt{5}$,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的射影等于-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且$\frac{A_n}{B_n}$=$\frac{6n+54}{n+5}$,则使得$\frac{a_n}{b_n}$为整数的正整数n的个数是(  )
A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案