精英家教网 > 高中数学 > 题目详情
1.已知a>0,b>0,c>0,用综合法证明:$\frac{b+c}{a}$+$\frac{c+a}{b}$+$\frac{a+b}{c}$≥6.

分析 由a>0,b>0,c>0,运用基本不等式,可得$\frac{a}{b}$+$\frac{b}{a}$≥2,$\frac{c}{a}$+$\frac{a}{c}$≥2,$\frac{c}{b}$+$\frac{b}{c}$≥2,相加即可得证.

解答 证明:a>0,b>0,c>0,可得
$\frac{a}{b}$+$\frac{b}{a}$≥2$\sqrt{\frac{a}{b}•\frac{b}{a}}$=2,
$\frac{c}{a}$+$\frac{a}{c}$≥2$\sqrt{\frac{c}{a}•\frac{a}{c}}$=2,
$\frac{c}{b}$+$\frac{b}{c}$≥2$\sqrt{\frac{c}{b}•\frac{b}{c}}$=2,
相加可得($\frac{a}{b}$+$\frac{b}{a}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}$+$\frac{b}{c}$)≥6,
即为$\frac{b+c}{a}$+$\frac{c+a}{b}$+$\frac{a+b}{c}$≥6,
(当且仅当a=b=c取得等号).

点评 本题考查不等式的证明,注意运用二元均值不等式,考查推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,则¬p是真命题
C.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
D.“a<1”是“${log_{\frac{1}{2}}}$a>0”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,已知3Sn=4an-2,n∈N+
(1)求数列{an}的通项公式;
(2)Tn是数列{log2an}的前n项和,求满足(1-$\frac{1}{{T}_{2}}$)(1-$\frac{1}{{T}_{3}}$)(1-$\frac{1}{{T}_{4}}$)…(1-$\frac{1}{{T}_{n}}$)>$\frac{51}{100}$的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.作下列函数的简图:
(1)y=$\frac{1}{2}$(cosx+|cosx|);
(2)y=sin|x-$\frac{π}{2}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列对应中是集合A到B上的一一映射的是(  )
A.A=R,B=R,f:x→y=x2B.A=R,B=R,f:x→y=-$\root{3}{x}$
C.A=R,B=R,f:x→y=x6D.A={x|x≥0},B{y|y>0},f:x→y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sin(α+β)•cosβ-cos(α+β)•sinβ=$\frac{3}{5}$,则cos2α=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=ex-x-1(e为自然对数的底数).
(1)求证:f(x)≥0恒成立;
(2)求证:($\frac{1}{2n}$)n+($\frac{3}{2n}$)n+($\frac{5}{2n}$)n+…+($\frac{2n-1}{2n}$)n<$\frac{\sqrt{e}}{e-1}$对一切正整数n均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知0<α<$\frac{π}{2}$<β<π,tan$\frac{α}{2}=\frac{1}{2}$,cos(β-α)=$\frac{\sqrt{2}}{10}$.
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知关于x的不等式ax2+3x+2>0(a∈R).
(1)若不等式ax2+3x+2>0的解集为{x|b<x<1},求a,b的值.
(2)求关于x的不等式ax2+3x+2>-ax-1(其中a>0)的解集.

查看答案和解析>>

同步练习册答案