精英家教网 > 高中数学 > 题目详情
6.已知sin(α+β)•cosβ-cos(α+β)•sinβ=$\frac{3}{5}$,则cos2α=$\frac{7}{25}$.

分析 由条件利用两角和差的正弦公式求得sinα 的值,再利用二倍角的余弦公式求得cos2α的值.

解答 解:∵sin(α+β)•cosβ-cos(α+β)•sinβ=sin[(α+β)-β]=sinα=$\frac{3}{5}$,
∴cos2α=1-2sin2α=1-2•$\frac{9}{25}$=$\frac{7}{25}$,
故答案为:$\frac{7}{25}$.

点评 本题主要考查两角和差的正弦公式的应用,二倍角的余弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.用系统抽样的方法从480名学生中抽取容量为20的样本,将480名学生随机地编号为1~480.按编号顺序平均分为20个组(1~24号,25~48号,…,457~480号),若第1组用抽签的方法确定抽出的号码为3,则第4组抽取的号码为75.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知cosα=$\frac{2}{3}$,则tanαsinα=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合P={x|x=$\frac{k}{3}$+$\frac{1}{6}$,k∈Z},Q={x|x=$\frac{k}{6}$+$\frac{1}{3}$,k∈Z},则(  )
A.P=QB.P?QC.P?QD.P∩Q=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,b>0,c>0,用综合法证明:$\frac{b+c}{a}$+$\frac{c+a}{b}$+$\frac{a+b}{c}$≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+1)ln(x+1)-ax2-2ax(a∈R),它的导函数为f′(x).
(Ⅰ)若函数g(x)=f′(x)+(2a-1)x只有一个零点,求a的值;
(Ⅱ)是否存在实数a,使得关于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=x•ln\frac{a}{x}\;\;(a>0)$.
(Ⅰ)若函数g(x)=ex在x=0处的切线也是函数f(x)图象的一条切线,求实数a的值;
(Ⅱ)若函数f(x)的图象恒在直线x-y+1=0的下方,求实数a的取值范围;
(Ⅲ)若x1,x2∈($\frac{a}{e}$,$\frac{a}{2}$),且x1≠x2,判断${({{x_1}+{x_2}})^4}$与a2x1x2的大小关系,并说明理由.
注:题目中e=2.71828…是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在复平面内,若复数z满足|z+1|=|1+iz|,则z在复平面内对应点的轨迹是(  )
A.直线B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin(-$\frac{2π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案