12£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖª3Sn=4an-2£¬n¡ÊN+
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©TnÊÇÊýÁÐ{log2an}µÄǰnÏîºÍ£¬ÇóÂú×㣨1-$\frac{1}{{T}_{2}}$£©£¨1-$\frac{1}{{T}_{3}}$£©£¨1-$\frac{1}{{T}_{4}}$£©¡­£¨1-$\frac{1}{{T}_{n}}$£©£¾$\frac{51}{100}$µÄ×î´óÕýÕûÊýnµÄÖµ£®

·ÖÎö £¨1£©ÓÉ3Sn=4an-2£¬n¡ÊN+£¬n=1ʱ£¬3a1=4a1-2£¬½âµÃa1=2£»µ±n¡Ý2ʱ£¬»¯Îª£ºan=4an-1£¬ÀûÓõȱÈÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©log2an=2n-1£®¿ÉµÃÊýÁÐ{log2an}µÄǰnÏîºÍTn=n2£®´úÈ루1-$\frac{1}{{T}_{2}}$£©£¨1-$\frac{1}{{T}_{3}}$£©£¨1-$\frac{1}{{T}_{4}}$£©¡­£¨1-$\frac{1}{{T}_{n}}$£©Õ¹¿ª»¯¼ò¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉ3Sn=4an-2£¬n¡ÊN+£¬n=1ʱ£¬3a1=4a1-2£¬½âµÃa1=2£»µ±n¡Ý2ʱ£¬3an=3£¨Sn-Sn-1£©=4an-2-£¨4an-1-2£©£¬»¯Îª£ºan=4an-1£¬
¡àÊýÁÐ{an}ÊǵȱÈÊýÁУ¬Ê×ÏîΪ2£¬¹«±ÈΪ4£®
¡àan=2¡Á4n-1=22n-1£®
£¨2£©log2an=2n-1£®
¡àÊýÁÐ{log2an}µÄǰnÏîºÍTn=$\frac{n£¨1+2n-1£©}{2}$=n2£®
¡à£¨1-$\frac{1}{{T}_{2}}$£©£¨1-$\frac{1}{{T}_{3}}$£©£¨1-$\frac{1}{{T}_{4}}$£©¡­£¨1-$\frac{1}{{T}_{n}}$£©=$£¨1-\frac{1}{{2}^{2}}£©$$£¨1-\frac{1}{{3}^{2}}£©$¡Á¡­¡Á$£¨1-\frac{1}{{n}^{2}}£©$=$\frac{£¨2-1£©¡Á£¨2+1£©}{{2}^{2}}$¡Á$\frac{£¨3-1£©¡Á£¨3+1£©}{{3}^{2}}$¡Á$\frac{£¨4-1£©¡Á£¨4+1£©}{{4}^{2}}$¡Á¡­¡Á$\frac{£¨n-2£©£¨n-1+1£©}{£¨n-1£©^{2}}$¡Á$\frac{£¨n-1£©£¨n+1£©}{{n}^{2}}$=$\frac{1}{2}$¡Á$\frac{£¨n+1£©}{n}$£®
¡à£¨1-$\frac{1}{{T}_{2}}$£©£¨1-$\frac{1}{{T}_{3}}$£©£¨1-$\frac{1}{{T}_{4}}$£©¡­£¨1-$\frac{1}{{T}_{n}}$£©£¾$\frac{51}{100}$¼´Îª£º$\frac{n+1}{2n}$£¾$\frac{51}{100}$£¬»¯Îª£ºn£¼50£¬
Òò´ËÂú×㣨1-$\frac{1}{{T}_{2}}$£©£¨1-$\frac{1}{{T}_{3}}$£©£¨1-$\frac{1}{{T}_{4}}$£©¡­£¨1-$\frac{1}{{T}_{n}}$£©£¾$\frac{51}{100}$µÄ×î´óÕýÕûÊýΪ49£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢µÈ±ÈÊýÁеÄͨÏʽ¡¢¶ÔÊýÔËËãÐÔÖÊ¡¢³Ë·¨¹«Ê½¡¢²»µÈʽµÄ½â·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýf£¨x£©=|x-1|+|x-2|ÖµÓòÊÇ[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÓñȽϷ¨Ö¤Ã÷£¨x-1£©£¨x-3£©£¼£¨x-2£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¡÷ABCÖÐcosA=$\frac{2\sqrt{5}}{5}$£¬cosB=$\frac{3\sqrt{10}}{10}$£¬OΪ¡÷ABCÄÚÐÄ£¬2$\sqrt{5}$$\overrightarrow{OA}$+$\sqrt{10}$$\overrightarrow{OB}$+m$\overrightarrow{OC}$=$\overrightarrow{0}$£¬Ôòm=£¨¡¡¡¡£©
A£®5$\sqrt{2}$B£®2$\sqrt{5}$C£®3$\sqrt{10}$D£®$\sqrt{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªA£¬B£¬CΪ¡÷ABCµÄÈý¸öÄڽǣ¬ÈôcosA£¼0£¬ÇÒcos2A-3sinA+1=0£¬Ôòsin£¨C-A£©+$\frac{\sqrt{3}}{2}$cos£¨2A-B£©µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-$\frac{1}{2}$£¬-$\frac{\sqrt{3}}{4}$£©B£®£¨-$\frac{1}{2}$£¬-$\frac{\sqrt{3}}{4}$]C£®[0£¬$\frac{\sqrt{3}}{4}$]D£®£¨-$\frac{2}{3}$£¬-$\frac{1}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªcos¦Á=$\frac{2}{3}$£¬Ôòtan¦Ásin¦Á=$\frac{5}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬0£¼¦Õ£¼¦Ð£©Í¼ÏóÉÏÁ½¸öÏàÁÚµÄ×îÖµµãΪ£¨$\frac{¦Ð}{6}$£¬2£©ºÍ£¨$\frac{2¦Ð}{3}$£¬-2£©
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬$\frac{¦Ð}{2}$£©ÉϵĶԳÆÖÐÐÄ¡¢¶Ô³ÆÖ᣻
£¨3£©½«º¯Êýf£¨x£©Í¼ÏóÉÏÿһ¸öµãÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»µÃµ½º¯Êýy=g£¨x£©£¬Áîh£¨x£©=f£¨x£©•g£¨x£©£¬Çóº¯Êýh£¨x£©ÔÚÇø¼ä£¨-$\frac{¦Ð}{3}$£¬0£©ÉϵÄ×î´óÖµ£¬²¢Ö¸³ö´ËʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªa£¾0£¬b£¾0£¬c£¾0£¬ÓÃ×ۺϷ¨Ö¤Ã÷£º$\frac{b+c}{a}$+$\frac{c+a}{b}$+$\frac{a+b}{c}$¡Ý6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇÊÇ120¡ã£¬ÇÒ$\overrightarrow{a}$=£¨-2£¬-4£©£¬|$\overrightarrow{b}$|=$\sqrt{5}$£¬Ôò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄÉäÓ°µÈÓÚ-$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸