精英家教网 > 高中数学 > 题目详情
20.已知△ABC中cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,O为△ABC内心,2$\sqrt{5}$$\overrightarrow{OA}$+$\sqrt{10}$$\overrightarrow{OB}$+m$\overrightarrow{OC}$=$\overrightarrow{0}$,则m=(  )
A.5$\sqrt{2}$B.2$\sqrt{5}$C.3$\sqrt{10}$D.$\sqrt{10}$

分析 求出sinA,sinB,利用两角和的余弦公式计算cosC,根据内心的性质得出a$\overrightarrow{OA}$+b$\sqrt{10}$$\overrightarrow{OB}$+c$\overrightarrow{OC}$=$\overrightarrow{0}$,令a=2$\sqrt{5}$,b=$\sqrt{10}$,则用余弦定理计算c即为m的值.

解答 解:∵cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,∴sinA=$\frac{\sqrt{5}}{5}$,sinB=$\frac{\sqrt{10}}{10}$.
∴cosC=-cos(A+B)=sinAsinB-cosAcosB=-$\frac{\sqrt{2}}{2}$.
不妨设a=2$\sqrt{5}$,b=$\sqrt{10}$,则c2=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=5$\sqrt{2}$.
∵O为△ABC内心,∴a$\overrightarrow{OA}$+b$\sqrt{10}$$\overrightarrow{OB}$+c$\overrightarrow{OC}$=$\overrightarrow{0}$,即2$\sqrt{5}$$\overrightarrow{OA}$+$\sqrt{10}$$\overrightarrow{OB}$+c$\overrightarrow{OC}$=$\overrightarrow{0}$.
∴m=c=5$\sqrt{2}$.
故选A.

点评 本题考查了三角形内心的性质,余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sinx-cosx,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移$\frac{π}{3}$,得到函数g(x)的图象,则函数(x)的一条对称轴方程为(  )
A.x=$\frac{π}{6}$B.x=$\frac{11π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,则¬p是真命题
C.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
D.“a<1”是“${log_{\frac{1}{2}}}$a>0”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式:$\frac{6}{x-2}$≤x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在二项式(x2-$\frac{1}{x}$)5的展开式中,记x4的系数为a,则${∫}_{0}^{\frac{a}{10}}$$\sqrt{1-{x}^{2}}$dx=(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合P={x|y=$\frac{1}{\sqrt{4-x}}$},Q={y|y=log2(x2+4)},集合P与集合Q所对应的韦恩图如图所示,则图中阴影部分表示的集合是(  )
A.{x|2≤x<4}B.{x|x<2}C.{x|x≥4}D.{x|x<2,或x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,已知3Sn=4an-2,n∈N+
(1)求数列{an}的通项公式;
(2)Tn是数列{log2an}的前n项和,求满足(1-$\frac{1}{{T}_{2}}$)(1-$\frac{1}{{T}_{3}}$)(1-$\frac{1}{{T}_{4}}$)…(1-$\frac{1}{{T}_{n}}$)>$\frac{51}{100}$的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.作下列函数的简图:
(1)y=$\frac{1}{2}$(cosx+|cosx|);
(2)y=sin|x-$\frac{π}{2}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知0<α<$\frac{π}{2}$<β<π,tan$\frac{α}{2}=\frac{1}{2}$,cos(β-α)=$\frac{\sqrt{2}}{10}$.
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

同步练习册答案