精英家教网 > 高中数学 > 题目详情
已知
a
=(sinθ,-2)与
b
=(1,cosθ)互相垂直,其中θ∈(0,
π
2
).
(1)求sinθ和cosθ的值;
(2)若sin(θ-j)=
10
10
,0<j<
π
2
,求j的值.
分析:(1)先根据
a
b
互相垂直得到
a
b
=0,然后将
a
=(sinθ,-2)与
b
=(1,cosθ)代入可得到sinθ=2cosθ,再由同角三角函数的基本关系和θ的取值范围可求得sinθ和cosθ的值.
(2)先根据j与θ的范围确定θ-j的范围,进而根据同角三角函数的基本关系可求得cos(θ-j)的值,再由cosj=cos[θ-(θ-j)]和两角和与差的余弦公式可求得最后答案.
解答:解:(1)因为
a
b
互相垂直,
所以
a
b
=0.
所以sinθ-2cosθ=0,即sinθ=2cosθ.
因为sin2θ+cos2θ=1,
所以(2cosθ)2+cos2θ=1.
解得cos2θ=
1
5
.则sin2θ=
4
5

因为θ∈(0,
π
2
),
所以sinθ>0,cosθ>0,
所以sinθ=
2
5
5
,cosθ=
5
5

(2)因为0<j<
π
2
,0<θ<
π
2
,所以-
π
2
<θ-j<
π
2

所以cos(θ-j)=
1-sin2(θ-j)
=
3
10
10

所以cosj=cos[θ-(θ-j)]=cosθcos(θ-j)+sinθsin(θ-j)=
2
2
.所以j=
π
4
点评:本题主要考查向量垂直与数量积的关系、同角三角函数的基本关系和两角和与差的公式.考查基础知识的综合应用,三角函数与向量的综合题是高考的热点问题,每年必考,一定要加强练习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(sinθ,cosθ)、
b
=(
3
,1)
(1)若
a
b
,求tanθ的值;
(2)若f(θ)=|
a
+
b
|,△ABC的三个内角A,B,C对应的三条边分别为a、b、c,且a=f(0),b=f(-
π
6
),c=f(
π
3
),求
AB
AC

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是
①②③
①②③

①平面向量
a
b
的夹角为60°,
a
=(2,0),|
b
|=1,则|
a
+
b
|=
7

②已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)其中θ∈(π,
2
)则
a
b

③O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
),λ∈(0,+∞),则直线AP一定通过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinα,cos2α),
b
=(2sinα-1,1),α∈(
π
2
,π),若
a
b
=
2
5
,则tan(α+
π
4
)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα+sinα,cosα)
b
=(m,sinα)
,(α∈(
π
12
,π],m∈R

(1)求函数f(α)=
a
b
解析式
(2)求函数y=f(α)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)已知
a
=(sinωx,-cosωx),
b
=(sinωx,
3
sinωx)(ω>0),若函数f(x)=
a
b
的最小正周期为
π
2

(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案