精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求证:函数上单调递增;
(2)若函数有四个零点,求的取值范围.

(1)详见解析;(2)实数的取值范围是.

解析试题分析:(1)直接利用导数证明函数上单调递增,在证明过程中注意导函数的单调性;(2)将函数的零点个数问题转化为函数图象的交点个数问题处理,但需注意将式子中的绝对值符号去掉,并借助函数的最值出发,构造有关参数的不等式组,再求解参数的取值范围.
试题解析:(1)

,所以,且函数上单调递增,
故函数上单调递增,,即
故函数上单调递增;
(2)
,当时,,则,所以
,故函数上单调递减,由(1)知,函数上单调递增,
故函数处取得极小值,亦即最小值,即
,则有,则有
即方程与方程的实根数之和为四,
则有,解得
综上所述,实数的取值范围是.
考点:1.函数的单调性;2.函数的零点个数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)当时,若函数在区间上的最大值为28,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试讨论的单调性;
(2)若对,总使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2 mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值域;
(2)设,函数.若对任意,总存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,()在处取得最小值.
(Ⅰ)求的值;
(Ⅱ)若处的切线方程为,求证:当时,曲线不可能在直线的下方;
(Ⅲ)若,()且,试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)图像在x=1处的切线的方程;
(Ⅱ)若的极大值和极小值分别为m,n,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)若恒成立,证明:当时,.

查看答案和解析>>

同步练习册答案