精英家教网 > 高中数学 > 题目详情

【题目】已知集合其中 . 表示 中所有不同值的个数.

(Ⅰ)若集合

(Ⅱ)若集合,求证: 的值两两不同并求

(Ⅲ)求的最小值.(用含的代数式表示

【答案】见解析.

【解析】试题分析:(Ⅰ)从任取两个数相加,共有个不同的值,所以;(Ⅱ)对于集合中的和式 .分两种情况时, 时, 时,不妨设,则,即的值两两不同利用组合知识可得;(不妨设,可得 中至少有个不同的数.

试题解析:任取两个数相加,共有个不同的值,所以

形如和式 共有所以.

对于集合中的和式

不妨设.

所以 的值两两不同.

.

不妨设,可得

.

中至少有个不同的数.

.

成等差数列

则对于每个和式 其值等于)或

中的一个.去掉重复的一个,

所以对于这样的集合, .

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若时, ,求的最小值;

(Ⅱ)设数列的通项,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知函数

)求函数的单调区间;

)若存在两条直线都是曲线的切线,求实数的取值范围;

)若,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,将曲线向左平移个单位长度得到曲线.

(1)求曲线的参数方程;

(2)已知为曲线上的动点, 两点的极坐标分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图矩形中, .点边上, 沿直线向上折起成.记二面角的平面角为

①存在某个位置,使

②存在某个位置,使

③任意两个位置,直线和直线所成的角都不相等.

以上三个结论中正确的序号是

A. B. ①② C. ①③ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲乙两家公司都愿意聘用某求职者,这两家公式的具体聘用信息如下:

(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿作了统计,得到如下数据分布:

若分析选择意愿与年龄这两个分类变量,计算得到的的观测值为,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱和一个正四棱锥组合而成,

(Ⅰ)证明:平面平面

(Ⅱ)求正四棱锥的高,使得二面角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在底面为正方形的四棱柱中, .

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

同步练习册答案