分析 求导数,利用函数f(x)在区间(1,+∞)上递减,可得f′(x)=$\frac{1}{x}$-a≤0在区间(1,+∞)上恒成立,即可求出实数a的取值范围.
解答 解:∵f(x)=lnx-ax(a∈R),
∴f′(x)=$\frac{1}{x}$-a,
∵函数f(x)在区间(1,+∞)上递减,
∴f′(x)=$\frac{1}{x}$-a≤0在区间(1,+∞)上恒成立,即a$≥\frac{1}{x}$,
而y=$\frac{1}{x}$在区间(1,+∞)上是单调减函数,
∴a≥1,
故答案为:[1,+∞).
点评 利用导数可以解决函数的单调性问题,本题解题的关键是转化为f′(x)=$\frac{1}{x}$-a≤0在区间(1,+∞)上恒成立.
科目:高中数学 来源: 题型:选择题
| A. | 计算1+3+5+…+2012 | |
| B. | 计算1×3×5×…×2012 | |
| C. | 求方程1×3×5×…×i=2012中的i值 | |
| D. | 求满足1×3×5×…×i>2012的最小整数i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 2 | 6 | 10 | 14 | ||||||||
| 1 | 4 | 5 | 8 | 9 | 12 | 13 | … | ||||
| 3 | 7 | 11 | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com