精英家教网 > 高中数学 > 题目详情
12、定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则(  )
分析:先根据两个函数图象之间的关系得出y=f(x)图象的对称性,再结合定义在R上的函数y=f(x)在(-∞,2)上是增函数,得出函数f(x)的单调性,最后结合图象即可得出结果.
解答:解:∵函数y=f(x)的图象可由y=f(x+2)图象向右平移2个单位得到,
且y=f(x+2)图象的对称轴是x=0,
∴y=f(x)图象的对称轴是x=2,如图,
定义在R上的函数y=f(x)在(-∞,2)上是增函数,
定义在R上的函数y=f(x)在(2,∞)上是减函数,
根据函数图象的对称轴是x=2可得:f(-1)=f(5),
由函数y=f(x)在(2,∞)上是减函数可得:f(5)<f(3),
即有f(-1)<f(3)
故选A.
点评:本题主要考查了函数单调性的应用、抽象函数及其应用等奇偶性与单调性的综合,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、定义在R上的函数y=f(x)满足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,则f(508)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①“a>b”是“2a>2b”成立的充要条件;
②“a=b”是“lga=lgb”成立的充分不必要条件;
③函数f(x)=ax2+bx(x∈R)为奇函数的充要条件是“a=0”
④定义在R上的函数y=f(x)是偶函数的必要条件是
f(-x)f(x)
=1”

其中真命题的序号是
①③
①③
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)=
-1
-1

查看答案和解析>>

同步练习册答案