精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x-alnx,(a∈R).
(1)当a=2时,求曲线f(x)在x=1处的切线方程;
(2)设函数$h(x)=f(x)+\frac{1+a}{x}$,求函数h(x)的单调区间;
(3)若$g(x)=-\frac{1+a}{x}$,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

分析 (1)当a=2时,求导f′(x)=1-$\frac{2}{x}$,当x=1时,f(1)=1,曲线f(x)在x=1处的切线斜率k=f′(1)=-1,曲线f(x)在(1,1)处的切线方程:y-1=-(x-1),x+y-2=0;
(2)求导h′(x)=1-$\frac{a}{x}$-$\frac{1+a}{{x}^{2}}$=$\frac{(x+1)[x-(1+a)]}{{x}^{2}}$,当a>-1时,令h′(x)>0,求得函数单调递增区间,当h′(x)<0,求得函数的单调递减区间,当a≤-1时,h′(x)>0恒成立,h(x)在(0,+∞)上单调递增;
(3)由题意可知:在[1,e]上存在一点x0,使得h(x0)≤0,因此函数h(x)=x-alnx+$\frac{1+a}{x}$在[1,e]上的最小值[h(x)]min≤0,分类,当a>-1及当a≤-1时,根据函数的单调性,求得[h(x)]min的值,即可求得a的取值范围.

解答 解:(1)当a=2时,则f(x)=x-2lnx,求导f′(x)=1-$\frac{2}{x}$,
当x=1时,f(1)=1,
曲线f(x)在(1,1)处的切线斜率k=f′(1)=1-$\frac{2}{1}$=-1,
∴曲线f(x)在(1,1)处的切线方程:y-1=-(x-1),即x+y-2=0,
∴曲线f(x)在x=1处的切线方程x+y-2=0;
(2)$h(x)=f(x)+\frac{1+a}{x}$=x-alnx+$\frac{1+a}{x}$,定义域为(0,+∞),
求导h′(x)=1-$\frac{a}{x}$-$\frac{1+a}{{x}^{2}}$=$\frac{(x+1)[x-(1+a)]}{{x}^{2}}$,
当a>-1时,令h′(x)>0,解得:x>a+1;
令h′(x)<0,解得:0<x<1+a,
故h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增;
当a≤-1时,h′(x)>0恒成立,h(x)在(0,+∞)上单调递增,
综上可知:当a>-1时,函数单调递增区间(0,a+1),单调递减区间(a+1,+∞);当a≤-1时,单调递增区间(0,+∞);
(3)由题意可知,在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,
∴在[1,e]上存在一点x0,使得h(x0)≤0,
即函数h(x)=x-alnx+$\frac{1+a}{x}$在[1,e]上的最小值[h(x)]min≤0,
由(2)可知:(Ⅰ)当a>-1时:①当a+1≥e时,h(x)在[1,e]上单调递减,
∴[h(x)]min=h(e)=e+$\frac{1+a}{e}$≤0,则a≥$\frac{{e}^{2}+1}{e-1}$,
∵$\frac{{e}^{2}+1}{e-1}$>e-1,
∴a≥$\frac{{e}^{2}+1}{e-1}$;
②当a+1≤1时,h(x)在[1,e]上单调递增,
∴[h(x)]min=h(1)=1+1+a≤0,
∴a≤-2,不满足题意;
③当1<a+1<e,即0<a<e-1,
∴[h(x)]min=h(1+1)=2+a-aln(1+a)≤0,
∵0<ln(1+a)<1,
∴0<aln(1+a)<a,
∴h(1+a)>2,此时不存在x0使得h(x0)≤0成立,
(Ⅱ)当a≤-1时:h(x)在(0,+∞)上单调递增,
∴[h(x)]min=h(1)=1+1+a≤0,即a≤-2,
综上所述,a的取值范围是:a≥$\frac{{e}^{2}+1}{e-1}$或a≤-2.

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及最值,考查导数的几何意义,曲线的切线方程,考查分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{lo{g}_{3}(2x-m)}$的定义域为[1,+∞),则m=(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数f(x)=$\sqrt{6sin(x+\frac{π}{6})-3\sqrt{2}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tan(α+$\frac{π}{4}$)=2,则$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等差数列{an}、{bn}的前n项和为Sn、Tn.若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{4n+27}$(n∈N+),$\frac{{a}_{7}}{{b}_{7}}$=$\frac{92}{79}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=sin2x-$\sqrt{3}$cos2x的图象的一条对称轴方程为(  )
A.x=$\frac{π}{12}$B.x=-$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=\frac{1}{lg(x+1)}+\sqrt{2-x}$的定义域为(  )
A.(-1,0)∪(0,2]B.[-2,0)∪(0,2]C.[-2,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\frac{{2\sqrt{13}}}{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{{2\sqrt{39}}}{9}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若正数a,b满足$\frac{1}{a}+\frac{2}{b}=1$,则$\frac{2}{a-1}+\frac{1}{b-2}$的最小值为2.

查看答案和解析>>

同步练习册答案