分析 由根式内部的代数式大于等于0,然后求解三角不等式得答案.
解答 解:由$6sin(x+\frac{π}{6})-3\sqrt{2}≥0$,得$sin(x+\frac{π}{6})≥\frac{\sqrt{2}}{2}$,
∴$\frac{π}{4}+2kπ≤x+\frac{π}{6}≤\frac{3π}{4}+2kπ$,k∈Z.
即$\frac{π}{12}+2kπ≤x≤\frac{7π}{12}+2kπ$,k∈Z.
∴函数f(x)=$\sqrt{6sin(x+\frac{π}{6})-3\sqrt{2}}$的定义域为[$\frac{π}{12}+2kπ,\frac{7π}{12}+2kπ$],k∈Z.
点评 本题考查函数的定义域及其求法,考查了三角不等式的解法,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+2y-5=0 | B. | 2x-y+5=0 | C. | x-2y+5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (1,2] | C. | (2,+∞) | D. | (-∞,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com