精英家教网 > 高中数学 > 题目详情
4.函数y=$\sqrt{lo{g}_{3}(2x-m)}$的定义域为[1,+∞),则m=(  )
A.0B.1C.2D.4

分析 由题意,log3(2x-m)≥0,求出x的范围,利用函数y=$\sqrt{lo{g}_{3}(2x-m)}$的定义域为[1,+∞),求出m.

解答 解:由题意,log3(2x-m)≥0,
∴2x-m≥1,
∴x≥$\frac{m+1}{2}$,
∵函数y=$\sqrt{lo{g}_{3}(2x-m)}$的定义域为[1,+∞),
∴$\frac{m+1}{2}$=1,
∴m=1.
故选B.

点评 本题考查函数的定义域,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若函数y=2-|x+3|在(-∞,t)上是单调增函数,则实数t的取值范围为(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数y=f(x)满足:f(0)=0且f(x+1)=f(x)+2x+5.
求:(1)f(x)的表达式;
(2)求函数y=f(x)在[t,t+3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=2-3,b=log35,c=cos100°,则(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在数列{an}中,an+1=an+a (n∈N*,a为常数),若平面上的三个不共线的非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足2$\overrightarrow{OC}$=a2$\overrightarrow{OA}$+a2015$\overrightarrow{OB}$,三点A、B、C共线且该直线不过O点,则S2016等于(  )
A.2016B.2017C.1007D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足an+1=2an,且a1、a2+1、a3成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记数列{log2an}的前n项和为Sn,求使不等式Sn>45成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若α,β∈($\frac{π}{4}$,$\frac{π}{2}$),则下列不等式中不成立的序号有①②④.
①sin2α<cos2β;②sinα+cosα<1;③tanα>sinα;④sin(α+β)>cos(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.p:若(x-1)(y+2)=0,则x=1或y=-2则p的逆否命题是真命题,¬p是假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-alnx,(a∈R).
(1)当a=2时,求曲线f(x)在x=1处的切线方程;
(2)设函数$h(x)=f(x)+\frac{1+a}{x}$,求函数h(x)的单调区间;
(3)若$g(x)=-\frac{1+a}{x}$,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案