精英家教网 > 高中数学 > 题目详情
已知正四棱锥P-ABCD的棱长为2
3
a,侧面等腰三角形的顶角为30°,则从点A出发,环绕侧面一周后回到A点的最短路程等于
 
考点:多面体和旋转体表面上的最短距离问题
专题:计算题,空间位置关系与距离
分析:用空间思维将此正四棱锥的侧面展开,得到一个由四个全等的顶角为30°的等腰三角形组成的图形,所求的路径,是一个以2
3
a为腰长,120°为顶角的三角形的底边,由余弦定理可得最短路程.
解答: 解:用空间思维将此正四棱锥的侧面展开,得到一个由四个全等的顶角为30°的等腰三角形组成的图形,
所求的路径,是一个以2
3
a为腰长,120°为顶角的三角形的底边,
由余弦定理可得最短路程等于
12a2+12a2-2•2
3
a•2
3
a•cos120°
=6a.
故答案为:6a.
点评:本题考查正四棱锥的侧面展开图,考查余弦定理,考查学生的计算能力,正确运用正四棱锥的侧面展开图是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个棱锥的三视图如图所示,则这个棱锥的体积为(  )
A、12B、36C、16D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x+
1
2

(Ⅰ)求f(x)的最小正周期及对称轴方程;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(
A
2
)=
1
2
,bc=6,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M为PB的中点,N在BC上,且AN=BN.
(Ⅰ)求证:AB⊥MN;
(Ⅱ)求点P到平面NMA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD.若PA=AB=BC=
1
2
AD.
(Ⅰ)求证:CD⊥PC;
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+y2=1,点P在直线l:x+y+1=0上,若过点P存在直线m与圆C交于A、B两点,且点A为PB的中点,则点P横坐标x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=100,an+1-an=2n,则
an
n
的最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是非零向量,则“
a
-
b
=
0
”是“
a
b
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-x+alnx
(其中a为常数).
(Ⅰ)当a=-2时,求函数 f(x)的最值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案