精英家教网 > 高中数学 > 题目详情

【题目】已知圆O:x2+y2=4.

(1)直线l1 与圆O相交于A、B两点,求|AB|;
(2)如图,设M(x1 , y1)、P(x2 , y2)是圆O上的两个动点,点M关于原点的对称点为M1 , 点M关于x轴的对称点为M2 , 如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问mn是否为定值?若是求出该定值;若不是,请说明理由.

【答案】
(1)解:由于圆心(0,0)到直线 的距离

圆的半径r=2,∴


(2)解:由于M(x1,y1)、p(x2,y2)是圆O上的两个动点,则可得 ,且

根据PM1的方程为 = ,令x=0求得 y=

根据PM2的方程为: = ,令x=0求得 y=

,显然为定值


【解析】(1)先求出圆心(0,0)到直线 的距离,再利用弦长公式求得弦长AB的值.(2)先求出M1和点M2的坐标,用两点式求直线PM1 和PM2的方程,根据方程求得他们在y轴上的截距m、n的值,计算mn的值,可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求证{an+3}是等比数列
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在R上的偶函数,f(0)=0,当x>0时,f(x)=log x.
(1)求 f(﹣4)的函数值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=3,an+1+an=32n , n∈N*
(1)证明数列{an﹣2n}是等比数列,并求数列{an}的通项公式;
(2)在数列{an}中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若1<r<s且r,s∈N* , 求证:使得a1 , ar , as成等差数列的点列(r,s)在某一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若曲线在点处的切线斜率为3,且时, 有极值。

1)求函数的解析式;

2)求函数上的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积为S= bccosA.
(1)求角A的大小;
(2)若c=8,点D在AC边上,且CD=2,cos∠ADB=﹣ ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式cx2+bx+a<0的解集为{x|﹣3<x< },则不等式的解集为ax2+bx+c≥0( )
A.
B.
或x<﹣2}
C.
D.{x|x<﹣3或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明:1﹣ ≤ln(x+1)≤x,其中x>﹣1.

查看答案和解析>>

同步练习册答案