精英家教网 > 高中数学 > 题目详情
19.将半径为R的半圆形铁皮制作成一个无盖圆锥形容器(不计损耗),则其容积为(  )
A.$\frac{{\sqrt{3}}}{24}π{R^3}$B.$\frac{{\sqrt{3}}}{8}π{R^3}$C.$\frac{{\sqrt{5}}}{24}π{R^3}$D.$\frac{{\sqrt{5}}}{8}π{R^3}$

分析 推导出设这个盖圆锥形底面半径r=$\frac{R}{2}$,母线长l=R,高h=$\sqrt{{R}^{2}-(\frac{R}{2})^{2}}$=$\frac{\sqrt{3}}{2}R$,由此能求出这个无盖圆锥形容器(不计损耗)的容积.

解答 解:将半径为R的半圆形铁皮制作成一个无盖圆锥形容器,
设这个盖圆锥形底面半径为r,则πR=2πr,解得r=$\frac{R}{2}$,
这个盖圆锥形母线长l=R,
∴这个盖圆锥形的高h=$\sqrt{{R}^{2}-(\frac{R}{2})^{2}}$=$\frac{\sqrt{3}}{2}R$,
∴这个无盖圆锥形容器(不计损耗)的容积:
V=$\frac{1}{3}×S×h$=$\frac{1}{3}×π{r}^{2}×h$
=$\frac{1}{3}×π×(\frac{R}{2})^{2}×\frac{\sqrt{3}}{2}R$
=$\frac{\sqrt{3}}{24}π{R}^{3}$.
故选:A.

点评 本题考查圆锥的容积的求法,考查推理论证能力、运算求解能力,考查等价转化思想、数形结合思想,考查空间思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{ex}{{e}^{x}}$.
(Ⅰ)求函数f(x)极值;
(Ⅱ)若直线y=ax+b是函数f(x)的切线,判断a-b是否存在最大值?若存在求出最大值,若不存在说明理由.
(Ⅲ)求方程f[f(x)]=x的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=-x2+ax-b,若a,b都是从[0,4]上任取的一个数,则满足f(1)>0时的概率(  )
A.$\frac{1}{32}$B.$\frac{9}{32}$C.$\frac{31}{32}$D.$\frac{23}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-3x<0},B={-1,0,1,2,3},则A∩B=(  )
A.{-1}B.{1,2}C.{0,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知${({x-\sqrt{3}})^{2017}}={a_0}{x^{2017}}+{a_1}{x^{2016}}+…+{a_{2016}}x+{a_{2017}}$,则${({{a_0}+{a_2}+…+{a_{2016}}})^2}-{({{a_1}+{a_3}+…+{a_{2017}}})^2}$的值为22017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有(  )种.
A.120种B.150 种C.180 种D.240 种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,在(0,+∞)内为增函数的是(  )
A.y=sin xB.y=xe2C.y=x3-xD.y=ln x-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx,若(1-ax)2017=b0+b1x+b2x2+…+b2017x2017(x∈R),则$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{{{b_{2017}}}}{{{2^{2017}}}}$的值为(  )
A.0B.-1C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组向量互相垂直的是(  )
A.$\overrightarrow{a}$=(1,2,-2),$\overrightarrow{b}$=(-2,-4,1)B.$\overrightarrow{a}$=(2,4,5),$\overrightarrow{b}$=(0,0,0)
C.$\overrightarrow{a}$=(1,2,$\frac{1}{2}$),$\overrightarrow{b}$=($\frac{1}{2}$,-$\frac{1}{2}$,1)D.$\overrightarrow{a}$=(2,4,5),$\overrightarrow{b}$=(-2,-4,-5)

查看答案和解析>>

同步练习册答案