精英家教网 > 高中数学 > 题目详情
7.如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A,B两处岛屿间的距离为(  )
A.$20\sqrt{6}$海里B.$40\sqrt{6}$海里C.$20(1+\sqrt{3})$海里D.40海里

分析 分别在△ACD和△BCD中利用正弦定理计算AD,BD,再在△ABD中利用余弦定理计算AB.

解答 解:连接AB,
由题意可知CD=40,∠ADC=105°,∠BDC=45°,∠BCD=90°,∠ACD=30°,
∴∠CAD=45°,∠ADB=60°,
在△ACD中,由正弦定理得$\frac{AD}{sin30°}=\frac{40}{sin45°}$,∴AD=20$\sqrt{2}$,
在Rt△BCD中,
∵∠BDC=45°,∠BCD=90°,
∴BD=$\sqrt{2}$CD=40$\sqrt{2}$.
在△ABD中,由余弦定理得AB=$\sqrt{800+3200-2×20\sqrt{2}×40\sqrt{2}×cos60°}$=20$\sqrt{6}$.
故选A.

点评 本题考查了解三角形的应用,合理选择三角形,利用正余弦定理计算是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2cos22x-2,给出下列命题:
①函数f(x)的值域为[-2,0];
②x=$\frac{π}{8}$为函数f(x)的一条对称轴;
③?β∈R,f(x+β)为奇函数;
④?α∈(0,$\frac{3π}{4}$),f(x)=f(x+2α)对x∈R恒成立,
其中的真命题有(  )
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点为F(-1,0),左准线为x=-2.
(1)求椭圆C的标准方程;
(2)已知直线l交椭圆C于A,B两点.
①若直线l经过椭圆C的左焦点F,交y轴于点P,且满足$\overrightarrow{PA}=λ\overrightarrow{AF}$$\overrightarrow{PB}=μ\overrightarrow{BF}$,求证:λ+μ为常数;
②若OA⊥OB(O为原点),求△AOB的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}$(n∈N*),bn=$\frac{a_n}{2n+1}$,则数列{bn}的前n项和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于下列说法正确的是(  )
A.若f(x)是奇函数,则f(x)是单调函数
B.命题“若x2-x-2=0,则x=1”的逆否命题是“若x≠1,则x2-x-2=0”
C.命题p:?x∈R,2x>1024,则¬p:?x0∈R,${2^{x_0}}<1024$
D.命题“?x∈(-∞,0),2x<x2”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$f(x)=\frac{{1+{e^x}}}{{1-{e^x}}}$(其中e是自然对数的底数)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设数列{an}满足a2+a4=10,点Pn(n,an)对任意的n∈N*,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=({1,2})$,则数列{an}的前n项和Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设Sn是等差数列{an}的前n项和,若a3+a5+a7=27,则S9=(  )
A.81B.79C.77D.75

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于无穷数列{an},记T={x|x=aj-ai,i<j},若数列{an}满足:“存在t∈T,使得只要am-ak=t(m,k∈N*且m>k),必有am+1-ak+1=t”,则称数列{an}具有性质P(t).
(Ⅰ)若数列{an}满足${a_n}=\left\{{\begin{array}{l}{2n,n≤2}\\{2n-5,n≥3}\end{array}}\right.$判断数列{an}是否具有性质P(2)?是否具有性质P(4)?
(Ⅱ)求证:“T是有限集”是“数列{an}具有性质P(0)”的必要不充分条件;
(Ⅲ)已知{an}是各项为正整数的数列,且{an}既具有性质P(2),又具有性质P(5),求证:存在整数N,使得aN,aN+1,aN+2,…,aN+k,…是等差数列.

查看答案和解析>>

同步练习册答案