精英家教网 > 高中数学 > 题目详情
已知椭圆的方程为x2+4y2=16,若P是椭圆上一点,且|PF1|=7,则|PF2|=
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由|PF1|,|PF2|为椭圆上一点到两个焦点的距离和椭圆的定义,知|PF1|+|PF2|=2a=10,由此能求出|PF2|值.
解答: 解:椭圆的方程为x2+4y2=16化简为:
x2
16
+
y2
4
=1
的两个焦点分别为F1、F2,点P为该椭圆上一点,
根据椭圆的定义,
∴|PF1|+|PF2|=8,
若|PF1|=7,则|PF2|=1
故答案为:1.
点评:本题考查椭圆的定义、椭圆的性质和应用,解题时要认真审题,注意公式的合理选用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知变量x,y满足
x≥2
x+y-4≤0
x-y-1≤0
,则
y
x
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式ax2+x+1>0(a≠0)恒成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知a+a-1=11,求a 
1
2
-a -
1
2
的值;
(Ⅱ)解关于x的方程(log2x)2-2log2x-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个三棱锥的三视图如图,则其体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m+log2x2的定义域是[-2,-1],且f(x)≤4恒成立,则实数m的取值范围是(  )
A、(-∞,4]
B、[2,+∞)
C、(-∞,2]
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
9
2
-n.
(1)证明:数列{an}是等差数列;
(2)求此数列的前二十项和S20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数数列{an}的前n项和为Sn,且满足:an2+an-2Sn=0,cn=anbn
(1)求数列{an}的通项公式;
(2)若b1=1,2bn-bn-1=0(n≥2,n∈N*),求出数列{cn}的前n项和Tn并判断是否存在整数m、M,使得m<Tn<M对任意正整数n恒成立,且M-m=4?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的奇函数f(x)是减函数,当不等式f(a)+f(a2)<0成立时,实数a的取值范围是(  )
A、a<-1 或 a>0
B、-1<a<0
C、a<0 或 a>1
D、a<-1 或 a>1

查看答案和解析>>

同步练习册答案