分析 (1)由两角差的正弦函数公式化简整理已知等式可得sin(C-A)=sin(B-C),利用三角形内角和定理即可得解C的值.
(2)设A=$\frac{π}{3}$+α,B=$\frac{π}{3}$-α,可得-$\frac{π}{3}$<α<$\frac{π}{3}$,又由正弦定理a=2RsinA=2sinA,b=2RsinB=2sinB,从而利用三角函数恒等变换的应用化简可得a2+b2=4+2cos2α,求得2α的范围,进而可求范围-$\frac{1}{2}$<cos2α≤1,由此得解a2+b2的取值范围.
解答 (本题满分为12分)
解:(1)因为tanC=$\frac{sinA+sinB}{cosA+cosB}$,
即$\frac{sinC}{cosC}=\frac{sinA+sinB}{cosA+cosB}$,…(2分)
所以sinCcosA+sinCcosB=cosCsinA+cosCsinB,
即sinCcosA-cosCsinA=cosCsinB-sinCcosB.
得sin(C-A)=sin(B-C).…(4分)
所以C-A=B-C,或C-A=π-(B-C)(舍).
即2C=A+B,得C=$\frac{π}{3}$.…(6分)
(2)由C=$\frac{π}{3}$,设A=$\frac{π}{3}$+α,B=$\frac{π}{3}$-α,0<A,B<$\frac{2π}{3}$,知-$\frac{π}{3}$<α<$\frac{π}{3}$.
又由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2R$,可得:a=2RsinA=2sinA,b=2RsinB=2sinB,…(8分)
故a2+b2=4(sin2A+2sin2B)=4($\frac{1-cos2A}{2}$+$\frac{1-cos2B}{2}$)=$4-2[cos(\frac{2π}{3}+2α)+cos(\frac{2π}{3}-2α)]$
=4+2cos2α.…(10分)
由-$\frac{π}{3}$<α<$\frac{π}{3}$,可得:-$\frac{2π}{3}$<2α<$\frac{2π}{3}$,-$\frac{1}{2}$<cos2α≤1,
故3<a2+b2≤6.
所以a2+b2的取值范围是(3,6]…12分
点评 本题主要考查了两角差的正弦函数公式,三角形内角和定理,正弦定理,三角函数恒等变换的应用,余弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{27}{4}$ | B. | -$\frac{27}{4}$ | C. | $\frac{27}{8}$ | D. | -$\frac{27}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com