精英家教网 > 高中数学 > 题目详情
20.已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若?x∈(0,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是$({-∞,2\sqrt{2}}]$.

分析 根据函数的奇偶性求出g(x),h(x)的表达式,然后将不等式恒成立进行参数分离,利用基本不等式进行求解即可得到结论.

解答 解:∵函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,
∴ex =g(x)+h(x),e-x=g(x)-h(x),
∴g(x)=$\frac{{e}^{x}{+e}^{-x}}{2}$,h(x)=$\frac{{e}^{x}{-e}^{-x}}{2}$.
∵?x∈(0,2]使得不等式g(2x)-ah(x)≥0恒成立,即$\frac{{e}^{2x}{+e}^{-2x}}{2}$-a•$\frac{{e}^{x}{-e}^{-x}}{2}$≥0恒成立,
∴a≤$\frac{{e}^{2x}{+e}^{-2x}}{{e}^{x}{-e}^{-x}}$=$\frac{{{(e}^{x}{-e}^{-x})}^{2}+2}{{e}^{x}{-e}^{-x}}$=(ex-e-x)+$\frac{2}{{e}^{x}{+e}^{-x}}$,
设t=ex-e-x,则函数t=ex-e-x在(0,2]上单调递增,
∴0<t≤e2-e-2
此时 不等式t+$\frac{2}{t}$≥2$\sqrt{2}$,当且仅当t=$\frac{2}{t}$,即t=$\sqrt{2}$时,取等号,∴a≤2$\sqrt{2}$,
故答案为:$({-∞,2\sqrt{2}}]$.

点评 本题主要考查函数奇偶性的应用,以及不等式恒成立问题,利用参数分离法是解决不等式恒成立问题的基本方法,本题使用了基本不等式进行求解最值,综合性较强,运算量较大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.化简:sin(α-4π)sin(π-α)-2cos2($\frac{3π}{2}$+α)-sin(α+π)cos($\frac{π}{2}$+α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆柱的侧面展开图是一个边长为2πa的正方形,则这个圆柱的体积是(  )
A.2a3B.π2a3C.$\frac{{π}^{2}}{2}$a3D.$\frac{{π}^{2}}{3}$a3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算lg$\sqrt{5}$+lg2•log3$\sqrt{3}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={y|y=$\frac{x}{{1+{x^2}}}$},B={x|y=ln(2x+1)},则A∩B=(  )
A.(-$\frac{1}{2}$,1)B.(-$\frac{1}{2}$,1]C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC,边a,b,c的对角分别为A,B,C,tanC=$\frac{sinA+sinB}{cosA+cosB}$.
(1)求角C的大小;
(2)若c=$\sqrt{3}$,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图)

(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N.当数据a,b,c的方差s2最大时,写出a,b,c的值.(结论不要求证明)
(注:s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为数据x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源:2016-2017学年广东清远三中高一上学期月考一数学试卷(解析版) 题型:选择题

已知函数的定义域为,若对任意,当时,都有,则称函数上为非减函数.设函数上为非减函数,且满足以下三个条件:①;②;③.则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=$\sqrt{1-{u}^{2}}$与u=1gx中能构成复合函数y=$\sqrt{1-l{g}^{2}x}$的区间是(  )
A.(0,+∞)B.[$\frac{1}{10}$,10]C.[$\frac{1}{10}$,+∞)D.(0,10)

查看答案和解析>>

同步练习册答案