精英家教网 > 高中数学 > 题目详情

【题目】已知圆,点是直线的一动点,过点作圆的切线,切点为.

(1)当切线的长度为时,求点的坐标;

(2) 的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.

(3)求线段长度的最小值.

【答案】(1)(2)3.

【解析】

试题分析:(1)根据圆的标准方程,求得半径和圆心坐标,设,从而由条件可求出,即可求解的值,得到点的坐标;(2)设,由经过三点的圆为直径,化简圆的方程,从而建立关于的方程,求得,即可得到圆过定点的坐标;(3)可写出圆和圆的一般方程,联立这两个一般方程即可求出相交弦的直线方程,进而求出原先到直线的距离,从而求出弦长,即可得到的最小值,并求出最小值.

试题解析:(1)由题意知,圆的半径 ,设是圆的一条切线,

解得 .

(2)设经过三点的圆为直径,

其方程为,即

,解得圆过定点.

(3)因为圆方程为,,圆,即

(2)-(1)得:圆方程与圆相交弦所在直线方程为:,点到直线的距离

相交弦长即:.

时,有最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系过点的直线与抛物线相交于点两点

1求证:为定值

2是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值如果存在求出该直线方程和弦长如果不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数,下列命题正确的是 .

函数关于原点中心对称;

两不同的点为切点作两条互相平行的切线,分别与交于两点,则这四个点的横坐标满足关系

为切点,作切线与图像交于点,再以点为切点作直线与图像交于点,再以点作切点作直线与图像交于点,则点横坐标为

,函数图像上存在四点,使得以它们为顶点的四边形有且仅有一个正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若是函数的极值点,求实数的值;

(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆假期是实施免收小型客车高速通行费的重大节假日,有一个群名为天狼星的自驾游车队,该车队是由31辆身长约为(以计算)的同一车型组成,行程中经过一个长为2725的隧道(通过隧道的车速不超过),匀速通过该隧道,设车队的速度为根据安全和车流的需要相邻两车之间保持的距离相邻两车之间保持的距离自第一辆车车头进入隧道至第31辆车车尾离开隧道所用的时间

(1)将表示成为的函数

(2)求该车队通过隧道时间的最小值及此时车队的速度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,),且数列是首项为2,公差为2的等差数列.

(1)若,当时,求数列的前项和

(2)设,如果中的每一项恒小于它后面的项,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个长方体的平面展开图及该长方体的直观图的示意图如图所示.

(1)请将字母标记在长方体相应的顶点处(不需说明理由);

(2)在长方体中,判断直线与平面的位置关系,并证明你的结论;

(3)在长方体中,设的中点为,且,求证:

平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案