精英家教网 > 高中数学 > 题目详情

【题目】一个长方体的平面展开图及该长方体的直观图的示意图如图所示.

(1)请将字母标记在长方体相应的顶点处(不需说明理由);

(2)在长方体中,判断直线与平面的位置关系,并证明你的结论;

(3)在长方体中,设的中点为,且,求证:

平面.

【答案】(1)略;(2)平面;(3)证明略

【解析】

试题分析:(1)根据展开前后的对应位置关系进行标点;(2)利用平行四边形找出线线平行,再利用线面平行的判定定理进行证明;(3)分别利用线面垂直的性质和相似三角形证明线线垂直,再利用线面垂直的判定定理进行证明.

试题解析:(1)字母标记如图所示.………………2分

(2)平面,证明如下:

在长方体中,,且

所以四边形是平行四边形,

所以.………………4分

平面平面,所以平面.………………6分

(3)在长方体中,平面

平面,所以.………………8分

中,

所以,所以.

因为,所以,所以.………………10分

平面平面,所以平面.………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某校学生的视力情况,现采用随机抽样的方式从该校的两班中各抽5名学生进行视力检测,检测的数据如下:

5名学生的视力检测结果是: .

5名学生的视力检测结果是: .

1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?并计算班的5名学生视力的方差;

2)现从班上述5名学生中随机选取2名,求这2名学生中至少有1名学生的视力低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线的一动点,过点作圆的切线,切点为.

(1)当切线的长度为时,求点的坐标;

(2) 的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.

(3)求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)是否存在实数,使函数上有最小值2?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为,已知.

(1)求角的值;

(2),当取最小值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体;第二次切削沿长方体的对角面刨开,得到两个三棱柱;第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数是自然对数的底数,曲线在点处的切线与轴平行

1的值

2的单调区间

3其中的导函数证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,矩形ABCD的一边AB在x轴上,另一边CD在x轴上方,且AB=8,BC=6,其中A(-4,0B4,0

(1若A、B为椭圆的焦点,椭圆经过C、D两点,求椭圆的方程

2若A、B为双曲线的焦点,且双曲线经过C、D两点,求双曲线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆直线.

(1)若直线与圆交于不同的两点,当时,求的值.

(2)若是直线上的动点,过作圆的两条切线切点为究:直线是否过定点;

(3)若为圆的两条相互垂直的弦,垂足为求四边形的面积的最大值.

查看答案和解析>>

同步练习册答案