精英家教网 > 高中数学 > 题目详情

【题目】已知圆直线.

(1)若直线与圆交于不同的两点,当时,求的值.

(2)若是直线上的动点,过作圆的两条切线切点为究:直线是否过定点;

(3)若为圆的两条相互垂直的弦,垂足为求四边形的面积的最大值.

【答案】(1)(2)(3).

【解析】

试题分析:(1)利用点到直线的距离公式,结合点到直线的距离,即可求解的值;(2)由题意得可知四点共圆且以为直径的圆上,在圆上可得直线的方程,即可得到直线是否过定点;(3)设圆心到直线的距离分别为 ,则,表示出四边形的面积,利用基本不等式,可求求四边形的面积.

试题解析:(1) 的距离,

.

(2)由题意可知:四点共圆且在以为直径的圆上,设,

其方程为:

,即:

在圆上,

,由

直线过定点.

(3) 设圆心到直线的距离分别为 ,

.

当且仅当时,取=.

四边形的面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个长方体的平面展开图及该长方体的直观图的示意图如图所示.

(1)请将字母标记在长方体相应的顶点处(不需说明理由);

(2)在长方体中,判断直线与平面的位置关系,并证明你的结论;

(3)在长方体中,设的中点为,且,求证:

平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面,边长为的菱形,又底面,且,点分别是棱的中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,四边形为正方形,点分别为线段上的点,

1求证:平面平面

2求证:当点不与点重合时,平面

3时,求点到直线距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料 ,五合板 ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料 ,五合板 ,生产每个书橱需要方木料 ,五合板 ,出售一张书桌可获利润 元,出售一个书橱可获利润 元.

(1)如果只安排生产书桌,可获利润多少?

(2)如果只安排生产书橱,可获利润多少?

(3)怎祥安排生产可使所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在数列{an}中,Sn为其前n项和,若an>0,且4Sn=an2+2an+1(n∈N*),数列{bn}为等比数列,公比q>1,b1=a1,且2b2b4,3b3成等差数列.

(1)求{an}与{bn}的通项公式;

(2)令cn= ,若{cn}的前项和为Tn,求证:Tn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

1求证:函数区间有且仅有一个零点;

2表示的最小值,设函数若关于方程其中常数在区间两个不相等的实根的零点为试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线为参数,曲线为参数

1相交于两点

2若把曲线上各点的横坐标压缩为原来的纵坐标压缩为原来的得到曲线设点是曲线上的一个动点求它到直线距离的最小值

查看答案和解析>>

同步练习册答案