【题目】已知圆,直线.
(1)若直线与圆交于不同的两点,当时,求的值.
(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;
(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.
科目:高中数学 来源: 题型:
【题目】一个长方体的平面展开图及该长方体的直观图的示意图如图所示.
(1)请将字母标记在长方体相应的顶点处(不需说明理由);
(2)在长方体中,判断直线与平面的位置关系,并证明你的结论;
(3)在长方体中,设的中点为,且,,求证:
平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,四边形为正方形,点分别为线段上的点,.
(1)求证:平面平面;
(2)求证:当点不与点重合时,平面;
(3)当时,求点到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具厂有方木料 ,五合板 ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料 ,五合板 ,生产每个书橱需要方木料 ,五合板 ,出售一张书桌可获利润 元,出售一个书橱可获利润 元.
(1)如果只安排生产书桌,可获利润多少?
(2)如果只安排生产书橱,可获利润多少?
(3)怎祥安排生产可使所得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在数列{an}中,Sn为其前n项和,若an>0,且4Sn=an2+2an+1(n∈N*),数列{bn}为等比数列,公比q>1,b1=a1,且2b2,b4,3b3成等差数列.
(1)求{an}与{bn}的通项公式;
(2)令cn= ,若{cn}的前项和为Tn,求证:Tn<6.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)记,求证:函数在区间内有且仅有一个零点;
(2)用表示中的最小值,设函数,若关于的方程(其中为常数)在区间有两个不相等的实根,记在内的零点为,试证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线:(为参数),曲线:(为参数).
(1)设与相交于,两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com