分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求解即可.
解答
解:画出满足条件的平面区域,如图示:,
目标函数z=$\frac{y}{x-2}$几何意义为区域内的点与D(2,0)的斜率,
过(-1,2)与(2,0)时斜率最小,
过(-1,-2)与(2,0)时斜率最大,
∴Z最小值=$\frac{2}{-1-2}$=-$\frac{2}{3}$,Z最大值=$\frac{-2}{-1-2}$=$\frac{2}{3}$,
故答案为:$[{-\frac{2}{3},\frac{2}{3}}]$.
点评 本题主要考查线性规划和直线斜率的基本应用,利用目标函数的几何意义和数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4+2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 2 | D. | 5+2$\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{2}$) | B. | ($\sqrt{2}$,$\sqrt{3}$) | C. | ($\sqrt{3},2$) | D. | (2,$\sqrt{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | (0,4] | C. | (-4,0] | D. | [4,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com