精英家教网 > 高中数学 > 题目详情
7.设x,y满足约束条件$\left\{{\begin{array}{l}{x+y≤1}\\{x+1≥0}\\{x-y≤1}\end{array}}\right.$,则目标函数$z=\frac{y}{x-2}$的取值范围是$[{-\frac{2}{3},\frac{2}{3}}]$.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求解即可.

解答 解:画出满足条件的平面区域,如图示:,
目标函数z=$\frac{y}{x-2}$几何意义为区域内的点与D(2,0)的斜率,
过(-1,2)与(2,0)时斜率最小,
过(-1,-2)与(2,0)时斜率最大,
∴Z最小值=$\frac{2}{-1-2}$=-$\frac{2}{3}$,Z最大值=$\frac{-2}{-1-2}$=$\frac{2}{3}$,
故答案为:$[{-\frac{2}{3},\frac{2}{3}}]$.

点评 本题主要考查线性规划和直线斜率的基本应用,利用目标函数的几何意义和数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1-x}{{e}^{x}}$.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)的零点和极值;
(3)若对任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{{e}^{2}}$成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知cosα=$\frac{1}{3}$,α∈(0,$\frac{π}{4}$),则$\frac{cos2α}{cos(\frac{π}{4}+α)}$=$\frac{4+\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线(x+2y+a)(x2-y2)=0为平面上交于一点的三条直线的充要条件是(  )
A.a=0B.a=1C.a=-1D.a∈R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=$\frac{1}{x}$(x>0)在点P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB(其中O为坐标原点)的面积为(  )
A.4+2$\sqrt{2}$B.2$\sqrt{2}$C.2D.5+2$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={a,a2,-2},B={2,4},A∩B={4},则a=(  )
A.2B.-2C.4D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作圆x2+y2=a2的切线,并延长交双曲线右支于点P,过右焦点F2作圆的切线交F1P于M,且M为F1P的中点,则双曲线的离心率e∈(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{3}$)C.($\sqrt{3},2$)D.(2,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=-|x|,g(x)=lg(ax2-4x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为(  )
A.(-∞,4]B.(0,4]C.(-4,0]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.i是虚数单位,设复数z1=1+2i,z2=-3i,则z1•z1=(  )
A.-6-3iB.2-iC.6-3iD.6+3i

查看答案和解析>>

同步练习册答案