精英家教网 > 高中数学 > 题目详情
12.解方程:2x2-4x+3$\sqrt{{x}^{2}-2x+6}$=15.

分析 设$\sqrt{{x}^{2}-2x+6}$=t≥$\sqrt{5}$.原方程化为2t2+3t-27=0,解出即可.

解答 解:设$\sqrt{{x}^{2}-2x+6}$=t≥$\sqrt{5}$.
原方程化为:2(x2-2x+6)+3$\sqrt{{x}^{2}-2x+6}$-27=0,即2t2+3t-27=0,
因式分解为:(2t+9)(t-3)=0,∵t$≥\sqrt{5}$,
∴t=3.
∴$\sqrt{{x}^{2}-2x+6}$=3.
两边平方可得:x2-2x-3=0,
解得x=3或-1.
经过检验:x=3或-1都是原方程的解.
∴x=3或-1是原方程的解.

点评 本题考查了根式类型方程的解法“换元法”、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设数列{an}满足lg(1+a1+a2+a3+…+an)=n+1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且x≥0时,f(x)=2x-x2
(1)求x<0时,f(x)的解析式;
(2)是否存在这样的正数a,b,当x∈[a,b]时,g(x)=f(x),且g(x)的值域为[$\frac{1}{b},\frac{1}{a}$]?若存在,求出a,b的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数a,b满足ab>0,a2b=2,m=ab+a2
(Ⅰ)求m的最小值;
(Ⅱ)若m的最小值为t,正实数x,y,z满足x2+y2+z2=$\frac{t}{3}$,求证:|x+2y+2z|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}和{bn}中,an,bn,an+1成等差数列,$\sqrt{{b}_{n}}$,$\sqrt{{a}_{n+1}}$,$\sqrt{{b}_{n+1}}$成等比数列,且a1=0,b1=1,设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.O为△ABC的重心,若OA=1,OB=$\frac{\sqrt{6}+\sqrt{2}}{2}$,∠AOB=$\frac{π}{4}$,则OC=$\sqrt{4+2\sqrt{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=x2-2x-8,则函数f(2-x2)在(  )
A.区间[-2,0]上是减函数B.区间[0,2]上是减函数
C.区间[-1,0]上是增函数D.区间[0,1]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(2x+1)=4x2+2x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a1=1,an=an-1cosx+cos(n-1)x(x≠kπ,k∈z),求an

查看答案和解析>>

同步练习册答案