精英家教网 > 高中数学 > 题目详情
某商场“五一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个大小相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(1)求该顾客摸三次球被停止的概率;
(2)设为该顾客摸球停止时所得的奖金数,求的分布列及均值.
(Ⅰ)记“顾客摸球三次被停止”为事件A,则
(Ⅱ)的可能取值为0、40、80



的分布列为

0
40
80




 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为
(1)求的分布列;
(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

横峰中学将在四月份举行安全知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为
(Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为,试写出的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:
参加次数
0
1
2
3
人数
0.1
0.2
0.4
0.3
根据上表信息解答以下问题:
(1)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数在区间内有零点”的事件为,求发生的概率
(2)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市某房地产公司售楼部,对最近100位采用分期付款的购房者进行统计,统计结果如下表所示:
付款方式
分1期
分2期
分3期
分4期
分5期
频数
40
20
a
10
b
 
已知分3期付款的频率为0.2,售楼部销售一套某户型的住房,顾客分1期付款,其利润为10万元;分2期、3期付款其利润都为15万元;分4期、5期付款其利润都为20万元,用表示销售一套该户型住房的利润。
(1)求上表中a,b的值;
(2)若以频率分为概率,求事件A:“购买该户型住房的3位顾客中,至多有1位采用分3期付款”的概率P(A);
(3)若以频率作为概率,求的分布列及数学期望E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D
两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假
设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某
运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作
K
D
得分
100
80
40
10
概率




乙系列:
动作
K
D
得分
90
50
20
0
概率




   现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一
名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二项分布满足X~B(3,),则(X=2)=   ▲   .(用分数表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

甲定点投篮命中的概率为,现甲共投5个球,规定每投篮一次命中得3分,未命中得-1分,则甲在5次投篮中所得分数的数学期望为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立。该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率.

查看答案和解析>>

同步练习册答案