精英家教网 > 高中数学 > 题目详情
13.若$\overrightarrow{a}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,则与$\overrightarrow{a}$平行的单位向量为±$(\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5})$.

分析 与$\overrightarrow{a}$平行的单位向量=$±\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$,即可得出.

解答 解:$|\overrightarrow{a}|$=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
与$\overrightarrow{a}$平行的单位向量=$±\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=±$(\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5})$.
故答案为:±$(\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5})$.

点评 本题考查了向量共线定理、数量积运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=alnx+ax2+bx,(a,b∈R).
(1)设a=1,f(x)在x=1处的切线过点(2,6),求b的值;
(2)设b=a2+2,求函数f(x)在区间[1,4]上的最大值;
(3)定义:一般的,设函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称x0为函数g(x)的不动点.设a>0,试问当函数f(x)有两个不同的不动点时,这两个不动点能否同时也是函数f(x)的极值点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ex,g(x)=$\frac{1}{2}$x2+x+1,命题p:?x≥0,f(x)≥g(x),则(  )
A.p是假命题,¬p:?x<0,f(x)<g(x)B.p是假命题,¬p:?x≥0,f(x)<g(x)
C.p是真命题,¬p:?x<0,f(x)<g(x)D.p是真命题,¬p:?x≥0,f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U=R,A={x|x≥3},B={x|x2-8x+7≤0},C={x|x≥a-1}.
(Ⅰ)求A∩B,A∪(∁UB);
(Ⅱ)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,点F1、F2为椭圆的左、右焦点,点P为椭圆上的一点.
(1)当∠F1PF2为直角,求P点横坐标的值;
(2)当∠F1PF2=60°时,求△F1PF2面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在公差不为零的等差数列{an}中,a1=8,且a1、a5、a7成等比数列,则Sn最大时,Sn=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合S={x|x2-3x-10<0},P={ x|a+1<x<2a+15},
(Ⅰ)求集合S;
(Ⅱ)若S⊆P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{{{log}_{0.9}}(2x-6)}$的定义域为(3,$\frac{7}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司今年一月份推出新产品A,其成本价为492元/件,经试销调查,销售量与销售价的关系如下表:
销售价(x/元件)650662720800
销售量(y件)350333281200
由此可知,销售量y(件)与销售价x(元/件)可近似看作一次函数y=kx+b的关系(通常取表中相距较远的两组数据所得一次函数较为精确).
(1)写出以x为自变量的函数y的解析式及定义域;
(2)试问:销售价定为多少时,一月份销售利润最大?并求最大销售利润和此时的销售量.

查看答案和解析>>

同步练习册答案