精英家教网 > 高中数学 > 题目详情
18.在公差不为零的等差数列{an}中,a1=8,且a1、a5、a7成等比数列,则Sn最大时,Sn=36.

分析 设公差d不为零的等差数列{an},运用等比数列的中项性质和等差数列的通项公式,解方程可得d=-1,再由等差数列的求和公式,结合二次函数最值的求法,注意n为正整数,即可得到最大值.

解答 解:设公差d不为零的等差数列{an},
由a1=8,且a1、a5、a7成等比数列,
可得a52=a1a7
即(8+4d)2=8(8+6d),
解得d=-1(0舍去),
则Sn=na1+$\frac{1}{2}$n(n-1)d=8n-$\frac{1}{2}$n(n-1)
=-$\frac{1}{2}$(n-$\frac{17}{2}$)2+$\frac{289}{8}$,
由于n为正整数,可知n=8或9,
则Sn最大,且为36.
故答案为:36.

点评 本题考查等差数列的通项公式和求和公式,以及等比数列的中项的性质,考查二次函数思想的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(Ⅰ)证明:平面ADE⊥平面ACD;
(Ⅱ)若AC=BC,求二面角D-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.补全用解析法证明余弦定理的过程.
证明:如图所示,以A为原点,△ABC的边AB所在直线为x轴,建立直角坐标系.则A(0,0),C(bcosA,bsinA),B(c,o),由两点间的距离公式得BC2=(bcosA-c)2+(bsinA-0)2,故a2=b2+c2-2bccosA,
同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四组中的f(x),g(x),表示同一个函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=$\frac{x^2}{x}$-1
C.f (x)=x2,g(x)=($\sqrt{x}$)4D.f(x)=|x|,g(x)=$\sqrt{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若$\overrightarrow{a}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,则与$\overrightarrow{a}$平行的单位向量为±$(\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a>0且满足不等式22a+1>25a-2
(1)求实数a的取值范围.
(2)求不等式loga(2x-1)<loga(7-5x).
(3)若函数y=loga(2x-1)在区间[1,3]有最小值为-2,求实数a值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow{b}$=(-2,-4,-6),|$\overrightarrow{c}$|=$\sqrt{14}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=7,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD.AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)求三棱锥P-ABF与三棱锥F-EBC的体积之比.

查看答案和解析>>

同步练习册答案