精英家教网 > 高中数学 > 题目详情
6.下列四组中的f(x),g(x),表示同一个函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=$\frac{x^2}{x}$-1
C.f (x)=x2,g(x)=($\sqrt{x}$)4D.f(x)=|x|,g(x)=$\sqrt{x^2}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断两个函数是同一函数.

解答 解:对于A,f(x)=1,定义域为R,g(x)=x0=1,定义域是{x|x≠0},定义域不同,不是同一函数;
对于B,f(x)=x-1,定义域是R,g(x)=$\frac{{x}^{2}}{x}$-1,定义域为{x|x≠0},定义域不同,不是同一函数;
对于C,f(x)=x2,定义域为R,g(x)=${(\sqrt{x})}^{4}$=x2,定义域是[0,+∞),定义域不同,不是同一函数;
对于A,f(x)=|x|,定义域是R,g(x)=$\sqrt{{x}^{2}}$=|x|,定义域是R,定义域相同,对应关系也相同,是同一函数.
故选:D.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列结论正确的是(  )
A.当x>0且x≠1时,$lgx+\frac{1}{lgx}≥2$B.当x>0时,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$
C.当x≥2时,$x+\frac{1}{x}≥2$D.当0<x≤2时,$x-\frac{1}{x}$无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线y=2b与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左支、右支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{\sqrt{15}}}{2}$D.$\frac{{\sqrt{19}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={-1,0,1},B={x|-1≤x≤1},则A∩B=(  )
A.{-1,0,1}B.{x|-1≤x≤1}C.{-1,0}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U=R,A={x|x≥3},B={x|x2-8x+7≤0},C={x|x≥a-1}.
(Ⅰ)求A∩B,A∪(∁UB);
(Ⅱ)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|-1<x<3},B={x|x>1},则集合A∩B=(  )
A.{-1,3}B.{-1,1}C.(1,3)D.{-1,+∞}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在公差不为零的等差数列{an}中,a1=8,且a1、a5、a7成等比数列,则Sn最大时,Sn=36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知二次函数y=x2+bx+c的图象过(1,0)与(3,0),则此函数的单调减区间为(  )
A.(2,+∞)B.(-∞,2)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$f({log_3}x)={x^2}-2x+4$,$x∈[\frac{1}{3},3]$.
(1)求f(x)的解析式及定义域;
(2)求f(x)的值域;
(2)若方程f(x)=a2-3a+3有实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案