精英家教网 > 高中数学 > 题目详情
17.直线y=2b与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左支、右支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{\sqrt{15}}}{2}$D.$\frac{{\sqrt{19}}}{2}$

分析 利用条件得出∠AOC=60°,C($\frac{2\sqrt{3}}{3}$b,2b),代入双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,可得$\frac{\frac{4}{3}{b}^{2}}{{a}^{2}}$-4=1,b=$\frac{\sqrt{15}}{2}$a,即可得出结论.

解答 解:∵∠AOC=∠BOC,
∴∠AOC=60°,
∴C($\frac{2\sqrt{3}}{3}$b,2b),
代入双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,可得$\frac{\frac{4}{3}{b}^{2}}{{a}^{2}}$-4=1,∴b=$\frac{\sqrt{15}}{2}$a,
∴c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{\sqrt{19}}{2}$a,
∴e=$\frac{c}{a}$=$\frac{\sqrt{19}}{2}$,
故选D.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,则输出的k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(Ⅰ)证明:平面ADE⊥平面ACD;
(Ⅱ)若AC=BC,求二面角D-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则(x-2)f(x)<0的解集是(  )
A.(-3,0)∪(2,3)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为(x-2)2+(y+1)2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.

(1)若Q是PA的中点,求证:PC∥平面BDQ;
(2)若PB=PD,求证:BD⊥CQ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.补全用解析法证明余弦定理的过程.
证明:如图所示,以A为原点,△ABC的边AB所在直线为x轴,建立直角坐标系.则A(0,0),C(bcosA,bsinA),B(c,o),由两点间的距离公式得BC2=(bcosA-c)2+(bsinA-0)2,故a2=b2+c2-2bccosA,
同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四组中的f(x),g(x),表示同一个函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=$\frac{x^2}{x}$-1
C.f (x)=x2,g(x)=($\sqrt{x}$)4D.f(x)=|x|,g(x)=$\sqrt{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow{b}$=(-2,-4,-6),|$\overrightarrow{c}$|=$\sqrt{14}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=7,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案