精英家教网 > 高中数学 > 题目详情
12.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为(x-2)2+(y+1)2=3.

分析 求出圆的半径,写出圆的方程即可.

解答 解:圆心为(2,-1),且圆心到直线3x-4y+5=0的距离为:
d=$\frac{|6+4+5|}{\sqrt{9+16}}$=3,
所以圆的半径为r=d=3,
圆的方程为:(x-2)2+(y+1)2=3.
故答案为:(x-2)2+(y+1)2=3.

点评 本题考查了点到直线的距离以及圆的方程的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范围(用集合表示).
(2)已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\sqrt{x}$+1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=alnx+ax2+bx,(a,b∈R).
(1)设a=1,f(x)在x=1处的切线过点(2,6),求b的值;
(2)设b=a2+2,求函数f(x)在区间[1,4]上的最大值;
(3)定义:一般的,设函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称x0为函数g(x)的不动点.设a>0,试问当函数f(x)有两个不同的不动点时,这两个不动点能否同时也是函数f(x)的极值点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG:GC=DH:HC=1:2,求证:
(1)E,F,G,H四点共面;
(2)EG与HF的交点在直线AC上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是a≤0或a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线y=2b与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左支、右支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{\sqrt{15}}}{2}$D.$\frac{{\sqrt{19}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ex,g(x)=$\frac{1}{2}$x2+x+1,命题p:?x≥0,f(x)≥g(x),则(  )
A.p是假命题,¬p:?x<0,f(x)<g(x)B.p是假命题,¬p:?x≥0,f(x)<g(x)
C.p是真命题,¬p:?x<0,f(x)<g(x)D.p是真命题,¬p:?x≥0,f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U=R,A={x|x≥3},B={x|x2-8x+7≤0},C={x|x≥a-1}.
(Ⅰ)求A∩B,A∪(∁UB);
(Ⅱ)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{{{log}_{0.9}}(2x-6)}$的定义域为(3,$\frac{7}{2}$].

查看答案和解析>>

同步练习册答案