精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A,B,C所对的边分别为a,b,c,若1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,则A=(  )
A.30°?B.45°?C.60°?D.120°?

分析 由同角三角函数基本关系式,正弦定理,两角和的正弦函数公式化简已知可求cosA,结合A的范围,由特殊角的三角函数值即可求解.

解答 解:∵1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,
∴1+$\frac{sinAcosB}{cosAsinB}$=$\frac{2sinC}{sinB}$,可得:$\frac{cosAsinB+sinAcosB}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∴$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∴cosA=$\frac{1}{2}$,
∵A∈(0°,180°),
∴A=60°.
故选:C.

点评 本题主要考查了同角三角函数基本关系式,正弦定理,两角和的正弦函数公式,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$,函数f(x)=logc(x+2)-1(c>0,c≠1)的图象恒过定点A(a,b),则$z=\frac{y-b}{x-a}$的取值范围是(  )
A.$[\frac{1}{3},2]$B.$[\frac{2}{5},1]$C.$[\frac{1}{2},\frac{3}{2}]$D.$[\frac{3}{2},\frac{5}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,平面SAB为圆锥的轴截面,O为底面圆的圆心,M为母线SB的中点,N为底面圆周上的一点,AB=4,SO=6.
(1)求该圆锥的侧面积;
(2)若直线SO与MN所成的角为30°,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=ln|x|+|sinx|(-π≤x≤π且x≠0)的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设 (1+i)( x-yi)=2,其中 x,y 是实数,i 为虚数单位,则 x+y=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x<2\\ f(x-1),x≥2\end{array}\right.$则f(log27)=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.要得到函数 y=2cos x 的图象,只需将 y=2sin( x-$\frac{π}{3}$) 的图象(  )
A.向右平移$\frac{5π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{5π}{6}$个单位D.向左平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果函数y=logax(a>0且a≠1)在[1,3]上的最大值与最小值的差为2,则满足条件的a值的集合是(  )
A.$\{\sqrt{3}\}$B.$\{\frac{{\sqrt{3}}}{3}\}$C.$\{\frac{{\sqrt{3}}}{3},\sqrt{3}\}$D.$\{\sqrt{3},3\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$(a>0,b>0)的右焦点为F,过点F作x轴的垂线与双曲线交于B,C两点(点B在x轴上方),过点B作斜率为负数的渐近线的垂线,过点C作斜率为正数的渐近线的垂线,两垂线交于点D,若D到直线BC的距离等于虚轴长,则双曲线的离心率e等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案