精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,点在直线l上.

(1)求曲线C和直线l的直角坐标方程;

(2)若直线l与曲线C的相交于点AB,求的值.

【答案】(1) Cl;(2)

【解析】

1)直接把曲线C的参数方程中的参数消去,即可得到曲线C的普通方程,把P的极坐标代入直线方程求得m,结合极坐标与直角坐标的互化公式可得直线l的直角坐标方程;

2)写出直线l的参数方程,把直线l的参数方程代入曲线C的直角坐标方程,化为关于t的一元二次方程,利用此时t的几何意义及根与系数的关系求解.

1)由为参数),消去参数α,可得曲线C的普通方程为

在直线lρcosθρsinθ+m0上,得,得m

∴直线lρcosθρsinθ+m0的直角坐标方程为xy0

2)由(1)知直线l的倾斜角为

直线l的参数方程为(t为参数),

代入

得:13t220t200

|PA||PB|

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线,C与l有且仅有一个公共点.

(Ⅰ)求a

(Ⅱ)O为极点,A,B为C上的两点,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C与圆M的一个公共点为

(1)求椭圆C的方程;

(2)过点M的直线l与椭圆C交于AB两点,且A是线段MB的中点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,点在直线l上.

(1)求曲线C和直线l的直角坐标方程;

(2)若直线l与曲线C的相交于点AB,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出共享单车后,又推出新能源分时租赁汽车.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:根据行驶里程数按1/公里计费;行驶时间不超过分时,按/分计费;超过分时,超出部分按/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间()是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示:

时间(分)

频数

2

18

20

10

将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.

(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;

(2)若王先生一次开车时间不超过40分为路段畅通”,表示3次租用新能源分时租赁汽车中路段畅通的次数,求的分布列和期望;

(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由(同一时段,用该区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某民营企业生产AB两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图甲,B产品的利润y与投资x的算术平方根成正比,其关系如图乙注:利润与投资单位为万元

分别将AB两种产品的利润y表示为投资x的函数关系式;

该企业已筹集到10万元资金,并全部投入AB两种产品的生产问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,询问了30名同学,得到如下的列联表:

使用智能手机

不使用智能手机

总计

学习成绩优秀

4

8

12

学习成绩不优秀

16

2

18

总计

20

10

30

(Ⅰ)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?

(Ⅱ)从使用智能手机的20名同学中,按分层抽样的方法选出5名同学,求所抽取的5名同学中学习成绩优秀学习成绩不优秀的人数;

(Ⅲ)从问题()中被抽取的5名同学,再随机抽取3名同学,试求抽取3名同学中恰有2名同学为学习成绩不优秀的概率.

参考公式:,其中

参考数据:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案