【题目】在直角坐标系xOy中,曲线C的参数方程为
(
为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,点
在直线l:
上.
(1)求曲线C和直线l的直角坐标方程;
(2)若直线l与曲线C的相交于点A、B,求
的值.
【答案】(1) C:
;l:
;(2) ![]()
【解析】
(1)直接把曲线C的参数方程中的参数消去,即可得到曲线C的普通方程,把P的极坐标代入直线方程求得m,结合极坐标与直角坐标的互化公式可得直线l的直角坐标方程;
(2)写出直线l的参数方程,把直线l的参数方程代入曲线C的直角坐标方程,化为关于t的一元二次方程,利用此时t的几何意义及根与系数的关系求解.
(1)由
为参数),消去参数α,可得曲线C的普通方程为
;
由
在直线l:ρcosθ﹣ρsinθ+m=0上,得
,得m
.
由
,
,
∴直线l:ρcosθ﹣ρsinθ+m=0的直角坐标方程为x﹣y
0;
(2)由(1)知直线l的倾斜角为
,
,
直线l的参数方程为
(t为参数),
代入
,
得:13t2﹣20t﹣20=0.
∴|PA||PB|
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线
,
,C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(
为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,点
在直线l:
上.
(1)求曲线C和直线l的直角坐标方程;
(2)若直线l与曲线C的相交于点A、B,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过
分时,按
元/分计费;超过
分时,超出部分按
元/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间
(分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
时间 |
|
|
|
|
频数 | 2 | 18 | 20 | 10 |
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为
分.
(1)写出王先生一次租车费用
(元)与用车时间
(分)的函数关系式;
(2)若王先生一次开车时间不超过40分为“路段畅通”,设
表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求
的分布列和期望;
(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知直线
的参数方程为
(
为参数),以坐标原点为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
交于
两点.
(1)求直线
l的普通方程和曲线
的直角坐标方程;
(2)已知点
的极坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知直线
的参数方程为
(
为参数),以坐标原点为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
交于
两点.
(1)求直线
l的普通方程和曲线
的直角坐标方程;
(2)已知点
的极坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某民营企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图甲,B产品的利润y与投资x的算术平方根成正比,其关系如图乙
注:利润与投资单位为万元
分别将A,B两种产品的利润y表示为投资x的函数关系式;
该企业已筹集到10万元资金,并全部投入A,B两种产品的生产
问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,询问了30名同学,得到如下的
列联表:
使用智能手机 | 不使用智能手机 | 总计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
总计 | 20 | 10 | 30 |
(Ⅰ)根据以上
列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?
(Ⅱ)从使用智能手机的20名同学中,按分层抽样的方法选出5名同学,求所抽取的5名同学中“学习成绩优秀”和“学习成绩不优秀”的人数;
(Ⅲ)从问题(Ⅱ)中被抽取的5名同学,再随机抽取3名同学,试求抽取3名同学中恰有2名同学为“学习成绩不优秀”的概率.
参考公式:
,其中![]()
参考数据:
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com