分析 根据f(x)的对称性可知f(x)在(0,+∞)上有两个零点,利用二次函数的性质列出不等式组即可解出a的范围.
解答 解:∵f(-x)=(-x)2-|-x|+a-1=x2-|x|+a-1=f(x),
∴f(x)是偶函数,
∵f(x)的图象与x轴有四个交点,
∴当x>0时,f(x)=x2-x+a-1有2个零点,
∵f(x)=x2-x+a-1的图象开口向上,对称轴为x=$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{f(0)>0}\\{f(\frac{1}{2})<0}\end{array}\right.$,即$\left\{\begin{array}{l}{a-1>0}\\{a-\frac{5}{4}<0}\end{array}\right.$,解得:1$<a<\frac{5}{4}$.
故答案为(1,$\frac{5}{4}$).
点评 本题考查了函数零点与函数图象的关系,二次函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{15}+\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{15}-\sqrt{3}}}{8}$ | C. | $\frac{{-\sqrt{15}+\sqrt{3}}}{8}$ | D. | $\frac{{-\sqrt{15}-\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com