精英家教网 > 高中数学 > 题目详情

【题目】如图1,在直角梯形ABCD中,AB∥CD,∠DAB=90°,点E、F分别在CD、AB上,且EF⊥CD,BE⊥BC,BC=1,CE=2.现将矩形ADEF沿EF折起,使平面ADEF与平面EFBC垂直(如图2).

(1)求证:CD∥面ABF;
(2)当AF的长为何值时,二面角A﹣BC﹣F的大小为30°.

【答案】
(1)证明:∵CE∥BF,CE面ABF,BF面ABF,

∴CE∥面ABF,

又DE∥AF,DE面ABF,AF面ABF,

∴DE∥面ABF,

∵DE∩CE=E,且DE、CE面CDE,

∴面CDE∥面ABF,

又CD面CDE,∴CD∥面ABF.


(2)解:过F作CB的垂线,交CB的延长线于H点,连结AH,

∵面ADEF⊥面EFBC,AF⊥EF,

∴AF⊥面EFBC,CB面EFBC,

∴CB⊥AF,CB⊥面AF,

∴AH⊥CH,

∴∠AHF是二面角A﹣BC﹣F的平面角,

∴∠AHF=30°,

∵BC=1,CE=2,且BE⊥BC,∴∠BCE=60°,

在直线梯形EFBC中,BF=2﹣cos60°=

∴FH= =

在直角三角形AHF中,AF=FH


【解析】(1)推导出CE∥面ABF,DE∥面ABF,由此能证明面CDE∥面ABF,从而CD∥面ABF.(2)过F作CB的垂线,交CB的延长线于H点,连结AH,推导出∠AHF是二面角A﹣BC﹣F的平面角,由此能求出AF的长.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在底面是正方形的四棱锥中, , ,点上,且.

(Ⅰ)求证: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用表示.(把频率当作概率).

(1)假设,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

(2)假设数字的取值是随机的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2x-P2-x,则下列结论正确的是(  )

A. 为奇函数且为R上的减函数

B. 为偶函数且为R上的减函数

C. 为奇函数且为R上的增函数

D. 为偶函数且为R上的增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.若sin(A﹣B)+sinC= sinA.
(1)求角B的值;
(2)若b=2,求a2+c2的最大值,并求取得最大值时角A,C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:

47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49

37 35 34 43 46 36 38 40 39 32 48 33 40 34

)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为满意,否则为不满意,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

16

14

合计

30

)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题中:

①命题“若x≥2且y≥3,则x+y≥5”为假命题.

②命题“若x2-4x+3=0,则x=3”的逆否命题为:“若x≠3,则x2-4x+3≠0”.

③“x>1”是“|x|>0”的充分不必要条件

④关于x的不等式|x+1|+|x-3|≥m的解集为R,则m≤4.

其中所有正确命题的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在[-1,1]上的奇函数,且f(1)=1,若任意的ab∈[-1,1],当a+b≠0时,总有

(1)判断函数fx)在[-1,1]上的单调性,并证明你的结论;

(2)解不等式:

(3)若fx)≤m2-2pm+1对所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常数),试用常数p表示实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0
(1)求C的大小;
(2)求a2+b2的最大值,并求取得最大值时角A,B的值.

查看答案和解析>>

同步练习册答案