精英家教网 > 高中数学 > 题目详情

【题目】如图,已知正方体的棱长为2,则以下四个命题中错误的是

A. 直线为异面直线 B. 平面

C. D. 三棱锥的体积为

【答案】D

【解析】分析:在A中,由异面直线判定定理得直线A1C1与AD1为异面直线;在B中,由A1C1AC,得A1C1平面ACD1;在C中,由AC⊥BD,AC⊥DD1,得AC面BDD1,从而BD1AC;在D中,三棱锥D1﹣ADC的体积为

详解:由正方体ABCD﹣A1B1C1D1的棱长为2,知:

在A中,直线A1C1平面A1B1C1D1,BD1平面A1B1C1D1

D1直线A1C1由异面直线判定定理得直线A1C1与AD1为异面直线,故A正确;

在B中,∵A1C1∥AC,A1C1平面ACD1,AC平面ACD1

∴A1C1平面ACD1,故B正确;

在C中,正方体ABCD﹣A1B1C1D1中,AC⊥BD,AC⊥DD1

∵BD∩DD1,∴AC⊥面BDD1,∴BD1AC,故C正确;

在D中,三棱锥D1﹣ADC的体积:

==,故D错误.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC中,AC=3,BC=4,AB=5,A=4.

(1)证明:

(2)求二面角的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若 ,则λ+μ的最大值为( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是(  )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

(1)求直线所过定点的坐标;

(2)求直线被圆所截得的弦长最短时的值及最短弦长.

(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为1,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx﹣ax2+x有两个零点,则实数a的取值范围是(
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设的顶点分别为,圆的外接圆,直线的方程是.

(1)求圆的方程;

(2)证明:直线与圆相交;

(3)若直线被圆截得的弦长为3,求的方程.

查看答案和解析>>

同步练习册答案