精英家教网 > 高中数学 > 题目详情
6.已知△ABC,∠A=$\frac{π}{3}$,BC=2,以BC为边作一个等边三角形BCP,则线段AP最大长度为2$\sqrt{3}$.

分析 设∠ABC=θ,在△ABC中,$\frac{2}{sin\frac{π}{3}}$=$\frac{AB}{sin(\frac{2π}{3}-θ)}$,可得AB=$\frac{4\sqrt{3}}{3}$$sin(\frac{2π}{3}-θ)$,在△ABP中,cos∠ABP=cos$(\frac{π}{3}+θ)$,利用余弦定理AP2=AB2+BP2-2AB•BPcos$(\frac{π}{3}+θ)$,代入整理化简即可得出.

解答 解:设∠ABC=θ,在△ABC中,$\frac{2}{sin\frac{π}{3}}$=$\frac{AB}{sin(\frac{2π}{3}-θ)}$,
∴AB=$\frac{4\sqrt{3}}{3}$$sin(\frac{2π}{3}-θ)$,
在△ABP中,cos∠ABP=cos$(\frac{π}{3}+θ)$,
∴AP2=AB2+BP2-2AB•BPcos$(\frac{π}{3}+θ)$
=$\frac{16}{3}$$si{n}^{2}(\frac{2π}{3}-θ)$+4-4×$\frac{4\sqrt{3}}{3}$$sin(\frac{2π}{3}-θ)$cos$(\frac{π}{3}+θ)$
=$\frac{16}{3}$$si{n}^{2}(\frac{π}{3}+θ)$-$\frac{16\sqrt{3}}{3}$$sin(\frac{π}{3}+θ)$cos$(\frac{π}{3}+θ)$+4
=$\frac{8}{3}$$[1-cos(\frac{2π}{3}+2θ)]$-$\frac{8\sqrt{3}}{3}$$sin(\frac{2π}{3}+2θ)$+4
=-$\frac{8}{3}$×2$[\frac{\sqrt{3}}{2}sin(\frac{2π}{3}+2θ)+\frac{1}{2}cos(\frac{2π}{3}+2θ)]$+$\frac{20}{3}$
=$\frac{20}{3}$-$\frac{16}{3}$$sin(2θ+\frac{5π}{6})$,$0<θ<\frac{2π}{3}$.
当且仅当θ=$\frac{π}{3}$时,AP取得最大值2$\sqrt{3}$.
故答案为:2$\sqrt{3}$.

点评 本题考查了正弦定理余弦定理、和差公式、三角函数求值、倍角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足:${a_1}∈{N^*}$,且${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤p\\ 2{a_n}-6,{a_n}>p\end{array}\right.({n=1,2,…})$.记集合$M=\left\{{{a_n}\left|{n∈{N^*}}\right.}\right\}$.
(1)若p=90,a2=6,写出数列{an}的前7项;
(2)若p=18,集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设点M的柱坐标为($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),则其直角坐标是$(-1,-1,\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设复数z=(m2-2m-15)+(m2+4m+3)i,试求实数m的值,使:
(1)z是实数;      
(2)z是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(Ⅰ)${({0.027})^{\frac{1}{3}}}-{(\frac{1}{8})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}•{(1+\sqrt{5})^0}$
(Ⅱ)$\frac{1}{2}lg25+2lg\sqrt{2}-lg\sqrt{0.1}+{log_4}32$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.质点P从如图放置的正方形ABCD的顶点A出发,根据掷骰子的情况,按照以下的规则在顶点间来回移动:如果朝上数字大于等于5,向平行于AB边的方向移动;如果朝上数字小于等于4,向平行于AD边的方向移动.记掷骰子2n(n∈N*)次后质点P回到A点的概率为an,回到C点的概率为cn
(I)求a1的值;
(II)当n=2时,设X表示质点P到达C点的次数,X的分布列和期望;
(III)当m=2015时,试比较a2015c2015,$\frac{1}{2}$的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知不等式x2+px+1>2x+p,当|p|≤2时恒成立,则实数x的取值范围是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}中,a1=1,a5=-3;
(1)求数列{an}的通项公式;
(2)若数列{an}的前n项和Sn=-44,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年里约奥运会在巴西里约举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用. 假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是$\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期 望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

同步练习册答案