精英家教网 > 高中数学 > 题目详情
17.下列函数既是奇函数,又在区间[-1,1]上单调递减的是(  )
A.f(x)=sinxB.f(x)=ln$\frac{2-x}{2+x}$C.f(x)=-|x+1|D.f(x)=$\frac{1}{2}({e^x}-{e^{-x}})$

分析 根据正弦函数的单调性,函数导数符号和函数单调性的关系,奇函数的定义,减函数的定义即可判断每个选项的正误,从而得到正确选项.

解答 解:A.f(x)=sinx在[-1,1]上单调递增;
B.f(x)=$ln\frac{2-x}{2+x}$,解$\frac{2-x}{2+x}>0$得该函数的定义域为[-2,2];
又f′(x)=$\frac{-4}{(2-x)(2+x)}<0$;
∴f(x)在区间[-1,1]上是减函数;
又f(-x)=$ln\frac{2+x}{2-x}=-ln\frac{2-x}{2+x}$=-f(x);
∴f(x)是奇函数;
∴该选项正确;
C.f(x)=-|x+1|,奇函数f(x)在原点有定义时f(0)=0;
而这里f(0)=-1;
∴该函数不是奇函数;
D.$f(x)=\frac{1}{2}({e}^{x}-{e}^{-x})$,f(-1)=$\frac{1}{2}(\frac{1}{e}-e)<\frac{1}{2}(e-\frac{1}{e})=f(1)$;
∴该函数在[-1,1]上不是减函数.
故选B.

点评 考查正弦函数的单调性,函数导数符号和函数单调性的关系,以及奇函数的定义,奇函数f(x)在原点有定义时f(0)=0,减函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1(n∈N*),在等差数列{bn}中,b2=5,且公差d=2.使得a1b1+a2b2+…+anbn>60n成立的最小正整数n为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知${(x+\frac{3}{{\root{3}{x}}})^n}$的展开式中,各项系数的和与其二项式系数的和之比为64.则展开式中所有的有理项的项数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图是一个程序框图,若输出a的值为365,则输入的t的值可以为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知:a,b∈R+,且a≠b,求证:a3+b3>a2b+ab2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.由直线x=$\frac{1}{2}$,x=2,曲线y=-$\frac{1}{x}$及x轴所围图形的面积为(  )
A.-2ln2B.2ln2C.$\frac{1}{2}ln2$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-$\frac{3}{2}$x+m(m∈R).
(I)求函数h(x)=g(x)-f(x)在区间[1,3]上的最大值和最小值;
(Ⅱ)若曲线y=f(x)和y=g(x)有公共的切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=log3(1-$\frac{a}{{4}^{x}}$)的定义域是(1,+∞),则实数a的值为(  )
A.-1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若从集合A={x|-10≤x≤10}中随机取一个数输入,则输出的y值落在区间(-5,2)内的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案