精英家教网 > 高中数学 > 题目详情

【题目】如图1,直线将矩形纸分为两个直角梯形,将梯形沿边翻折,如图2,在翻折的过程中(平面和平面不重合),下面说法正确的是

图1 图2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的过程中,平面恒成立

D.在翻折的过程中,平面恒成立

【答案】C

【解析】

因为相交,所以与平面相交,故A错误.在任何位置都不垂直于,如果“存在某一位置,使得平面”,则存在某一位置,使得两者矛盾,故B错误.在任何位置都不垂直于,如果“在翻折的过程中,平面恒成立”,那么恒成立,两者矛盾故D错误.

由题意知不平行,且在同一平面内.

所以相交,所以与平面相交,故A错误.

在任何位置都不垂直于,如果“存在某一位置,使得平面”,则存在某一位置,使得两者矛盾,故B错误.

在任何位置都不垂直于,如果“在翻折的过程中,平面恒成立”,那么恒成立,两者矛盾故D错误.

综上,选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数,有以下三个结论:

①函数恒有两个零点,且两个零点之积为

②函数的极值点不可能是

③函数必有最小值.

其中正确结论的个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若函数在区间上是单调函数,试求的取值范围;

2)若函数在区间上恰有3个零点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱柱中,,点上.

(1)证明:平面

(2)当为何值时,平面,并求出此时直线与平面之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,两两垂直,分别是的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P ABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.

,点K在椭圆E上,分别为椭圆的两个焦点,求的范围;

证明:直线OM的斜率与l的斜率的乘积为定值;

若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)讨论函数在定义域内极值点的个数;

2)设直线为函数的图象上一点处的切线,证明:在区间上存在唯一的,使得直线与曲线相切.

查看答案和解析>>

同步练习册答案