精英家教网 > 高中数学 > 题目详情
(理)函数f(x)=4x(x>1)的反函数f-1(x)=
 
考点:反函数
专题:计算题,函数的性质及应用
分析:设y=4x,由指对数式互化得到x=log4y,再将x、y互换并求出原函数的值域,即可得出所求反函数.
解答: 解:设y=4x(x>1),
可得x=log4y,
由x>1得y=4x函数的值域为(4,+∞),
∴函数f(x)=4x(x>1)的反函数f-1(x)=log4x,(x>4).
故答案为:log4x,(x>4)
点评:本题求已知函数的反函数,着重考查了对数的定义、指数式与对数式互化、反函数求解的一般方法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线过(-2
3
,9)与(6
3
,-15)两点,则直线l的倾斜角是(  )
A、60°B、120°
C、45°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

从圆x2-2x+y2-2y+1=0外一点P(-1,1)向这个圆作两条切线,则该圆夹在两切线间的劣弧的长为(  )
A、
3
B、
π
3
C、
π
6
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2bx-1(b∈R).
(1)若函数y=f(x)与x轴的两个交A(x1,0),B(x2,0)点之间的距离为2,求b的值;
(2)若关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为-1,公差d≠0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项.
(1)求{an}的通项公式;
(2)若Cn=an•bn,求数列{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

一条线段的长等于10,两端点A、B分别在x轴和y轴上滑动,M在线段AB上且
AM
=4
MB
,则点M的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x+
m
x
≥4
在x∈[3,4]内恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100),分别加以统计,得到如图所示的频率分布直方图.
(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数:
(2)若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”;“25周岁以下组”中日平均生产不足60件的称为“菜鸟”.从样本中的“生产能手”和”菜鸟”中任意抽取2人,求这2人日平均生产件数之和X的分布列及期望.(“生产能手”日平均生产件数视为95件,“菜鸟”日平均生产件数视为55件).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合S={1,2},集合T={x|(x-1)(x-3)=0},那么S∪T=(  )
A、∅B、{1}
C、{1,2}D、{1,2,3}

查看答案和解析>>

同步练习册答案