(本题满分14分)在平面直角坐标系中,已知点A(-2,1),直线。
(1)若直线过点A,且与直线垂直,求直线的方程;
(2)若直线与直线平行,且在轴、轴上的截距之和为3,求直线的方程。
科目:高中数学 来源: 题型:解答题
已知的顶点A(0,1),AB边上的中线CD所在直线方程为,AC边上的高BH所在直线方程为.
(1)求的项点B、C的坐标;
(2)若圆M经过不同的三点A、B、P(m、0),且斜率为1的直线与圆M相切于点P
求:圆M的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线过点
(1)若直线在坐标轴上的截距相等,求直线的方程;
(2)若直线与坐标轴的正半轴相交,求使直线在两坐标轴上的截距之和最小时,直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点. 且PQ∥OA交OB于点Q.
(1)若和四边形的面积满足时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点与的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分) 如图,在平面直角坐标系xoy中,设点F(0, p)(p>0), 直线l : y= -p, 点P在直线l上移动,R是线段PF与x轴的交点, 过R、P分别作直线、,使, .
(1)求动点Q的轨迹C的方程;
(2)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(3)对(2)求证:当直线MA, MF, MB的斜率存在时,直线MA, MF, MB的斜率的倒数成等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com