精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<π)的部分图象如图所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,f($\frac{7π}{12}$)=0,f($\frac{11π}{12}$)=0,则A=(  )
A.1B.xC.0D.$\frac{2}{3}$$\sqrt{2}$

分析 首先,根据图象得到函数周期,利用周期公式可求ω,由题意可得点($\frac{\frac{11π}{12}+\frac{7π}{12}}{2}$,A)在函数图象上,可得φ=2kπ-$\frac{7π}{4}$,k∈Z,结合范围0<φ<π,即可求φ,由f($\frac{π}{2}$)=-$\frac{2}{3}$可求A的值.

解答 解:根据图象得到:A=2,
∴T=2($\frac{11π}{12}$-$\frac{7π}{12}$)=$\frac{2π}{3}$=$\frac{2π}{ω}$,
∴ω=3,
∴f(x)=Asin(3x+φ),
∵由题意可得,点($\frac{\frac{11π}{12}+\frac{7π}{12}}{2}$,A)在函数图象上,可得:Asin($\frac{\frac{11π}{12}+\frac{7π}{12}}{2}$×3+φ)=A,即:sin($\frac{\frac{11π}{12}+\frac{7π}{12}}{2}$×3+φ)=1,
∴解得:φ=2kπ-$\frac{7π}{4}$,k∈Z,
∵0<φ<π,
∴φ=$\frac{π}{4}$,
又∵f($\frac{π}{2}$)=Asin(3×$\frac{π}{2}$+$\frac{π}{4}$)=A×(-$\frac{\sqrt{2}}{2}$)=-$\frac{2}{3}$,
∴解得:A=$\frac{2\sqrt{2}}{3}$.
故选:D.

点评 本题重点考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的图象与性质及其运用,由点($\frac{\frac{11π}{12}+\frac{7π}{12}}{2}$,A)在函数图象上求φ是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知i为虚数单位,则复数z=(x-3)+(x+3)i(x∈R)对应的点不可能位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.命题“若一个数是负数,则它的平方是正数”的逆命题是“若一个数的平方不是正数,则它不是负数”
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1<0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆E:(x+2)2+y2=4,点,动圆P过点F(2,0),且与圆E内切于点M,则动圆P的圆心P的轨迹方程是x2-$\frac{{y}^{2}}{3}$=1(x≤-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线l把圆x2+y2-2y=0的面积平分,则它被这个圆截得的弦长为(  )
A.4B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$x2-(2a+2)x+(2a+1)lnx
(1)若曲线y=f(x)在点(2,f(2))处的切线的斜率小于0,求f(x)的单调区间;
(2)对任意的a∈[$\frac{3}{2}$,$\frac{5}{2}$],x1,x2∈[1,2](x1≠x2),恒有|f(x1)-f(x2)|<λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求正数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的函数$f(x)=-\frac{1}{3}x_{\;}^3+bx_{\;}^2+cx+bc$.
(1)如果函数$f(x)在x=1处有极值-\frac{4}{3}$,求b、c;
(2)设当x∈($\frac{1}{2}$,3)时,函数y=f(x)-c(x+b)的图象上任一点P处的切线斜率为k,若k≤2,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列从集合A到集合B的对应f是映射的是(  )
A.A=R,B={x|x是正实数},f:A中的数的绝对值
B.A={0,1},B={-1,0,1},f:A中的数的开方
C.A=Z,B=Q,f:A中的数的倒数
D.A={-1,0,1},B={-1,0,1},f:A中的数的平方

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,且△PAD是边长为4的正三角形,M为PD的中点,底面ABCD是矩形,CD=3.   
(1)求异面直线PB与CM所成的角α的余弦值;
(2)求直线AC与平面PCM所成的角β的正切值.

查看答案和解析>>

同步练习册答案