精英家教网 > 高中数学 > 题目详情
15.已知复数z满足z=$\frac{5}{1-2i}$,则z•$\overline z$=(  )
A.2B.$\sqrt{5}$C.3D.5

分析 直接利用复数的除法运算法则化简求解即可.

解答 解:复数z满足z=$\frac{5}{1-2i}$=$\frac{5(1+2i)}{(1-2i)(1+2i)}$=1+2i,则z•$\overline z$=(1+2i)(1-2i)=5.
故选:D.

点评 本题考查复数的除法的运算法则,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知点列An(xn,0),n∈N*,其中x1=0,x2=1.A3是线段A1A2的中点,A4是线段A2A3的中点,…,An+2是线段AnAn+1的中点,…设an=xn+1-xn
(Ⅰ)写出xn与xn-1、xn-2(n≥3)之间的关系式并计算a1,a2,a3
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P在圆C:x2+y2-8x-6y+21=0上运动,O是坐标原点,求线段OP的中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲、乙两名运动员进行2016里约奥运会选拔赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为$\frac{1}{2}$,乙获胜的概率为$\frac{1}{2}$,各局比赛结果相互独立.
(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;
(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(0,1),B(-$\sqrt{3}$,0),C(-$\sqrt{3}$,2),则△ABC外接圆的圆心到直线y=-$\sqrt{3}$x的距离为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}\sqrt{x},x≥0\\ \sqrt{-x},x<0\end{array}$,若f(a)+f(-1)=4,则a=(  )
A.±1B.9C.-9D.±9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.甲、乙两队参加听歌猜歌名游戏,每队3人.随机播放一首歌曲,参赛者开始抢答,每人只有一次抢答机会(每人抢答机会均等),答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为$\frac{2}{3}$,乙队中3人答对的概率分别为$\frac{2}{3}$,$\frac{1}{3}$,$\frac{1}{2}$,且各人回答正确与否相互之间没有影响.
(Ⅰ)若比赛前随机从两队的6个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;
(Ⅱ)用ξ表示甲队的总得分,求随机变量ξ的分布列和数学期望;
(Ⅲ)求两队得分之和大于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数$\frac{1-i}{z}$=4+2i(i为虚数单位),则复数z在平面上的对应点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案