精英家教网 > 高中数学 > 题目详情
已知方程lg(x-1)+lg(3-x)=lg(a-x).
(1)若方程有且只有一个根,求a的取值范围.
(2)若方程无实数根,求a的取值范围.
考点:对数的运算性质
专题:函数的性质及应用
分析:lg(x-1)(3-x)=lg(a-x),(x-1)(3-x)=a-x,x2-5x+(a+3)=0,由此结合已知条件和对数性质分类讨论,能求出a的取值范围.
解答: 解:lg(x-1)(3-x)=lg(a-x)
(x-1)(3-x)=a-x
x2-5x+(a+3)=0
当△=25-4(a+3)<0,a>
13
4
,原方程无解;
a=
13
4
,有一个解x=
5
2
,代入原方程,成立;
a<
13
4
,x2-5x+(a+3)=0有两个解
x=
13-4a
2

∵x-1>0,3-x>0,a-x>0
∴1<x<3,x<a,
由1<
13-4a
2
<3,
-3<
13-4a
<1,
∴0
13-4a
<1,
0≤13-4a<1,
-1<4a-13≤0
3<a≤
13
4

1<
5-
13-4a
2
<3
-1<
13-4a
<3,
∴0
13-4a
<3,
0≤13-4a<9
-9<4a-13<=0
1<a≤
13
4

综上:a≤1,无解;1<a≤3,1个解;3<a<
13
4
,两个解;a=
13
4
,1个解;a>
13
4
,无解.
∴(1)若方程有且只有一个根,a的取值范围是{a|1<a≤3}∪{
13
4
}.
(2)若方程无实数根,a的取值范围是{a|a≤1或a>
13
4
}.
点评:本题考查实数的取值范围的求法,是中档题,解题时要注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=4x3+6x2+12x+1的极值点个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c,f(-3)=f(1)=0,f(0)=-3求方程f(x)=2x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx),
b
=(sinx,sinx),函数f(x)=
a
b

(1)求f(x)的对称轴方程;
(2)若对任意实数x∈[
π
6
π
3
],不等式f(x)-m<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在二项式(x+
1
2
x
n的展开式,第四项与第七项的二项式系数相等.
(1)求n的值及其常数项;
(2)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+2x+c>0(a,c∈R)和不等式(2x-1)(3x+1)<0有相同的解集,求不等式2x-cx2-a>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学的高二(1)班有男同学45名,女同学15名,老师按分层抽样的方法组建了一个4人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、探究,老师决定从这个兴趣小组中选出两名同学去做某项实验,求选出的两名同学中恰有一名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,命题q:函数f(x)=(1-a) x在定义域内是增函数,若命题“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C的对边分别为a,b,c,若b=2,B=
π
6
,C=
π
4

(1)求边长c的值.
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案