精英家教网 > 高中数学 > 题目详情
已知2sin2x-cos2x+sinxcosx-6sinx+3cosx=0,求
2cosx(sinx+cosx)
1+tanx
的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由条件利用同角三角函数的基本关系求得 tanx=
1
2
,再化简要求的式子为2×
1
1+tan2x
,从而求得结果.
解答: 解:∵2sin2x-cos2x+sinxcosx-6sinx+3cosx=0,
∴(sinx+cosx)(2sinx-cosx)-3(2sinx-cosx)=0,
 即(2sinx-cosx)(sinx+cosx-3)=0.
 显然sinx+cosx-3≠0,∴2sinx-cosx=0,即 tanx=
1
2

2cosx(sinx+cosx)
1+tanx
=
2cosx(cosx+sinx)
cosx+sinx
cosx
=2cos2x=2×
1
sec2x
=2×
1
1+tan2x
=2×
1
1+
1
4
=
8
5
点评:本题主要考查利用同角三角函数的基本关系进行化简求值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆G:
x2
4
+y2=1.过x轴上的动点P(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.
(Ⅰ)求椭圆G上的点到直线x-2y+1=0的最大距离;
(Ⅱ)①当实数m=1时,求A,B两点坐标;
②将|AB|表示为m的函数,并求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
2
-
1
ex
-ax(a∈R).
(1)当a=
3
2
时,求函数f(x)的单调区间;
(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象通过原点,对称轴为x=-2n,(n∈N*).f′(x)是f(x)的导函数,且f′(0)=2n,(n∈N*).
(1)求f(x)的表达式(含有字母n);
(2)若数列{an}满足an+1=f′(an),且a1=4,求数列{an}的通项公式;
(3)在(2)条件下,若bn=n•2 
an+1-an
2
,Sn=b1+b2+…+bn,是否存在自然数M,使得当n>M时n•2n+1-Sn>50恒成立?若存在,求出最小的M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x,x≤0
2f(x-1),x>0
,若函数f(x)=3x+a有且只有一个解,求a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y均为正实数,且x+2y+2xy=8,求x+2y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立.
(1)求红队至少一名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px上任一点到焦点的距离比到y轴距离大1.
(1)求抛物线的方程;
(2)设A、B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M(4、0),求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C的两个焦点坐标分别是F1(-2,0),F2(2,0)
(1)若F1到椭圆C的短轴一端点的距离是2
2
,求椭圆的离心率;
(2)若椭圆C经过点P(
5
2
,-
3
2
)求椭圆C方程.

查看答案和解析>>

同步练习册答案