精英家教网 > 高中数学 > 题目详情
若x,y均为正实数,且x+2y+2xy=8,求x+2y的最小值.
考点:基本不等式
专题:不等式的解法及应用
分析:由x+2y+2xy=8,可得2y=
8-x
1+x
>0(0<x<8).可得x+2y=x+
8-x
1+x
=
9
1+x
+x+1-2
,利用基本不等式的性质即可得出.
解答: 解:由x+2y+2xy=8,可得2y=
8-x
1+x
>0(0<x<8).
∴x+2y=x+
8-x
1+x
=
9
1+x
+x+1-2
≥2
(x+1)•
9
1+x
-2=4,当且仅当x=2时取等号.
∴x+2y的最小值是4.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比.一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元.设每天的购票人数为x,盈利额为y.
(Ⅰ)求y与x之间的函数关系;
(Ⅱ)试用程序框图描述算法(要求:输入购票人数,输出盈利额);
(Ⅲ)该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?注:可选用数据:
2
=1.41,
3
=1.73,
5
=2.24.

查看答案和解析>>

科目:高中数学 来源: 题型:

工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85,且各台机床是否正常工作相互之间没有影响,求这个小时内:
(1)三台机床都能正常工作的概率;
(2)三台机床中至少有一台能正常工作的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
a
x
(a∈R),求证:在[
|a|
,+∞)上方程f(x)=2013至多有一个根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2sin2x-cos2x+sinxcosx-6sinx+3cosx=0,求
2cosx(sinx+cosx)
1+tanx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1)+
1
2
x2-ax+1(a>0).
(1)求函数y=f(x)在点(0,f(0))处的切线方程;
(2)当a>1时,求函数y=f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3

(Ⅰ)若原点到直线x+y-b=0的距离为
2
,求椭圆的方程;
(Ⅱ)设过椭圆的右焦点且倾斜角为45°的直线和椭圆交于A,B两点.当|AB|=
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)上任意一点A(x0,y0)任意做两条倾斜角互补的直线交椭圆于B、C两点,求直线BC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为-4时,则输入的S0的值为
 

查看答案和解析>>

同步练习册答案