精英家教网 > 高中数学 > 题目详情
已知f(x)=lnx,(m<0),直线l与函数f(x)、g(x)的图像都相切,且与函数f(x)的图像的切点的横坐标为1。
(Ⅰ)求直线l的方程及m的值;
(Ⅱ)若h(x)= f(x+1)-g′(x),求函数h(x)的最大值;
(Ⅲ)求证:对任意正整数n,总有
解:(Ⅰ)依题意知,直线的斜率
,故直线与函数f(x)的图像的切点坐标是(1,0),
∴直线的方程为y=x-1,
又∵直线的图像也相切,
∴由,得

∵m<0,
∴解得m=-2。
(Ⅱ)


>0,解得:-1<x<0;
<0,解得:x<-1(舍去)或x>0,
∴h(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,
∴当x=0时,h(x)取得最大值h(0)=2。
(Ⅲ)∵由(II)知:当x>-1时,,即
∴当x>-1时,,当且仅当x=0时等号成立,
,故
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
lnx,x>0
x+2,x<0
,则f(x)>1
 的解集为(  )
A、(-1,0)∪(0,e)
B、(-∞,-1)∪(e,+∞)
C、(-1,0)∪(e,+∞)
D、(-∞,1)∪(0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx-
a
x

(I)当a>0时,判断f(x)在定义域上的单调性;
(II)若f(x)在[1,e](e是自然对数的底)上的最小值为
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
3
2
-
a
x
,(a∈R)

①若方程e2f(x)=g(x)在区间[
1
2
,1]
上有解,求a的取值范围;
②若函数h(x)=
1
2
x2-ax+(a-1)f(x)(a≥1)
,讨论函数h(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•揭阳二模)已知f(x)=
lnx,(x>0)
ex.(x≤0)
(e=2.718…),则不等式f(x)-1≤0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)已知f(x)=lnx,g(x)=
1
3
x3+
1
2
x2+mx+n
,直线l与函数f(x),g(x)的图象都相切于点(1,0).
(1)求直线l的方程及g(x)的解析式;
(2)若h(x)=f(x)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的极大值.

查看答案和解析>>

同步练习册答案