【题目】为了解学生身高情况,某校以的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为,测得男生身高情况的频率分布直方图(如图所示):
(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在之间的男生中任选2人,求至少有1人身高在之间的概率.
【答案】(1)174.64cm(2).
【解析】试题分析:
(1)由题意结合中位数的求法可得男生身高的中位数是174.64cm;
(2)列出所有可能的事件,结合古典概型公式可得至少有1人身高在之间的概率是.
试题解析:
(1)由题意得,所抽取的男生人数为:
1000×8%×=40人
依据样本频率分布直方图:0.01×5+0.025×5+x=0.5 得x=0.325 ,而身高170~175之间的频率为0.35,所以中位数为170+5×≈174.64cm
(2)样本中身高在180~185 cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190 cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的共有:
(①,②)(①,③)(①,④)(①,⑤)(①,⑥)
(②,③)(②,④)(②,⑤)(②,⑥)
(③,④)(③,⑤)(③,⑥)
(④,⑤)(④,⑥)
(⑤,⑥)
故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm之间的可能结果数为9,因此,所求概率P2==.
科目:高中数学 来源: 题型:
【题目】现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.
(Ⅰ)求小明同学至少取到1道乙类题的概率;
(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.求小明同学至少答对2道题的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路(不考虑宽度)..
(I)求道路BE的长度;
(Ⅱ)求道路AB,AE长度之和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
甲 7 8 7 9 5 4 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,以频率作为概率,请依据上述数据估计,求甲在第11至第13次射击中获得优秀的次数的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,给出下列命题:
①若函数f(x)是R上周期为3的偶函数,且满足f(1)=1,则f(2)-f(-4)=0;
②若函数f(x)满足f(x+1)f(x)=2 017,则f(x)是周期函数;
③若函数g(x)=是偶函数,则f(x)=x+1;
④函数y=的定义域为.
其中正确的命题是________.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是菱形, 是矩形,平面平面, , , , 为的中点.
(1)求证: 平面;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com