分析 (1)由已知中a>0,函数g(x)=ax2-2ax+1+b在区间[2,3]上有最大值4和最小值1.可得$\left\{\begin{array}{l}g(2)=1\\ g(3)=4\end{array}\right.$,解得:a,b的值;
(2)由(1)知,g(x)=x2-2x+1,∴$f(x)=\frac{g(x)}{x}=\frac{{{x^2}-2x+1}}{x}=x+\frac{1}{x}-2$,f(x)在(-1,0)上单调减,由单调性定义可证明结论;
(3)对于函数f(x)=$\frac{g(x)}{x}$,若不等式f(2x)-k•2x≥0在[-1,1]上有解,则当2x=t时,$?t∈[\frac{1}{2},2],使k≤\frac{f(t)}{t}=\frac{1}{t^2}-\frac{2}{t}+1$,进而可得实数k的取值范围.
解答 解:(1)g(x)=ax2-2ax+1+b=a(x-1)2+1+b-a,
对称轴x=1…(1分)
∵a>0,图象开口向上
∴g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上单调增,…(2分)
∴$\left\{\begin{array}{l}g(2)=1\\ g(3)=4\end{array}\right.$,即∴$\left\{\begin{array}{l}4a-4a+1+b=1\\ 9a-6a+1+b=4\end{array}\right.$,
解得∴$\left\{\begin{array}{l}a=1\\ b=0\end{array}\right.$;…(4分)
(2)由(1)知,g(x)=x2-2x+1,
∴$f(x)=\frac{g(x)}{x}=\frac{{{x^2}-2x+1}}{x}=x+\frac{1}{x}-2$,f(x)在(-1,0)上单调减.…(5分)
下面证明f(x)在(-1,0)上单调减.
证明:任取x1,x2∈(-1,0)且x1<x2,
$f({x_1})-f({x_2})={x_1}+\frac{1}{x_1}-2-({x_2}+\frac{1}{x_2}-2)$=${x_1}-{x_2}+(\frac{1}{x_1}-\frac{1}{x_2})$
=${x_1}-{x_2}+\frac{{{x_2}-{x_1}}}{{{x_1}{x_2}}}=({x_1}-{x_2})(1-\frac{1}{{{x_1}{x_2}}})=({x_1}-{x_2})\frac{{{x_1}{x_2}-1}}{{{x_1}{x_2}}}…(7分)$
∵-1<x1<x2<0,∴x1-x2<0,0<x1x2<1,x1x2-1<0
∴$({x_1}-{x_2})\frac{{{x_1}{x_2}-1}}{{{x_1}{x_2}}}>0$,∴f(x1)-f(x2)>0∴f(x1)>f(x2),
∴f(x)在(-1,0)上的单调减.…(8分)
(3)$f(x)=\frac{g(x)}{x}=\frac{{{x^2}-2x+1}}{x}=x+\frac{1}{x}-2$,
设2x=t,∵x∈[-1,1],∴$t∈[\frac{1}{2},2]$,…(9分)∵f(2x)-k2x≥0在x∈[-1,1]有解,
∴f(t)-kt≥0在$t∈[\frac{1}{2},2]$有解,∴$?t∈[\frac{1}{2},2],使k≤\frac{f(t)}{t}=\frac{1}{t^2}-\frac{2}{t}+1$,
∴$k≤{(\frac{f(t)}{t})_{max}},t∈[\frac{1}{2},2]$…(11分)
再令$\frac{1}{t}=m$,则$m∈[\frac{1}{2},2]$,∴k≤(m2-2m+1)max
令h(m)=m2-2m+1=(m-1)2,对称轴x=1,∴当m=2时,h(m)max=h(2)=1,…(13分)
∴k≤1,
故实数k的取值范围(-∞,1]. …(14分)
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com