精英家教网 > 高中数学 > 题目详情
9.直线$\sqrt{3}$x-y+a=0的倾斜角为60°.

分析 由直线的倾斜角α与斜率k的关系,可以求出α的值.

解答 解:设直线$\sqrt{3}$x-y+a=0的倾斜角是α,
则直线的方程可化为y=$\sqrt{3}$x+a,
l的斜率k=tanα=$\sqrt{3}$,
∵0°≤α<180°,
∴α=60°.
故答案为60°.

点评 本题考查了利用直线的斜率求倾斜角的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在四面体S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,则该四面体外接球的表面积是(  )
A.$8\sqrt{6}π$B.$\sqrt{6}π$C.24πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,函数g(x)=ax2-2ax+1+b在区间[2,3],上有最大值4和最小值1.
(1)求a,b的值;
(2)判断函数f(x)=$\frac{g(x)}{x}$在(-1,0)上的单调性,并用单调性定义证明;
(3)对于函数f(x)=$\frac{g(x)}{x}$,若不等式f(2x)-k•2x≥0在[-1,1]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线3x+4y+17=0与圆x2+y2-4x+4y-17=0相交于A,B,则|AB|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2a•4x-2x-1.
(1)若a=1,求当x∈[-3,0]时,函数f(x)的取值范围;
(2)若关于x的方程f(x)=0有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,$\overrightarrow a•(\overrightarrow a+\overrightarrow b)=0$,则$|2\overrightarrow a-\overrightarrow b|$=(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且$2bcosA-\sqrt{3}ccosA=\sqrt{3}acosC$.
(1)求角A的值;
(2)若$∠B=\frac{π}{6}$,BC边上中线$AM=\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆的中心在坐标原点,焦点在x轴上,离心率为$\frac{1}{2}$,右焦点到左顶点的距离为3.
(1)、求椭圆的方程;
(2)、直线l过点E(-1,0)且与椭圆交于A,B两点,若$\overrightarrow{AE}$=2$\overrightarrow{EB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆锥的底面直径和母线长都是$2\sqrt{3}$.
(1)求该圆锥的外接球的表面积;
(2)正方体的一面在该圆锥的底面上,其余四个顶点在圆锥的母线上,求该正方体的棱长.

查看答案和解析>>

同步练习册答案